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Figure 1. MammalAlps: Overview of the data and proposed benchmarks. (a) Nine camera traps were installed at three different
sites in the Swiss National Park and recorded video and audio of animal activity for six weeks. (b) We propose a multimodal species and
hierarchical behavior recognition benchmark for wildlife based on video, audio and segmentation maps. (c) We propose the first multi-
view, long-term event understanding benchmark that aims at summarizing long-term ecological events into meaningful information for
behavioral ecology.

Abstract

Monitoring wildlife is essential for ecology and ethol-
ogy, especially in light of the increasing human impact on
ecosystems. Camera traps have emerged as habitat-centric
sensors enabling the study of wildlife populations at scale
with minimal disturbance. However, the lack of annotated
video datasets limits the development of powerful video un-
derstanding models needed to process the vast amount of
fieldwork data collected. To advance research in wild an-
imal behavior monitoring we present MammAlps, a multi-
modal and multi-view dataset of wildlife behavior monitor-
ing from 9 camera-traps in the Swiss National Park. Mam-
mAlps contains over 14 hours of video with audio, 2D seg-

mentation maps and 8.5 hours of individual tracks densely
labeled for species and behavior. Based on 6‘135 single
animal clips, we propose the first hierarchical and multi-
modal animal behavior recognition benchmark using au-
dio, video and reference scene segmentation maps as inputs.
Furthermore, we also propose a second ecology-oriented
benchmark aiming at identifying activities, species, num-
ber of individuals and meteorological conditions from 397
multi-view and long-term ecological events, including false
positive triggers. We advocate that both tasks are comple-
mentary and contribute to bridging the gap between ma-
chine learning and ecology. Code and data are available at
https://github.com/eceo-epfl/MammAlps.

https://github.com/eceo-epfl/MammAlps


1. Introduction
Due to unprecedented rates of biodiversity loss, monitoring
wild animals behavior has become a crucial task in con-
servation ecology and wildlife management [6, 44]. More
broadly, understanding animal behavior is important across
many fields [15, 32, 46]. Wild animal behavior can be
monitored with a variety of sensors. Animal-centric sen-
sors such as bio-loggers are traditionally used to obtain
broad behavioral information over large spatio-temporal ex-
tents [14, 15, 26, 46]. Conversely, habitat-centric imagery
acquired from camera traps [11, 15, 17, 46] provides more
fine-grained information on wildlife-environment interac-
tions. With the most recent camera trap setups achieving
enhanced battery life and storage, it is now becoming possi-
ble to study animal behavior at scale in the wild with video
traps [10, 29, 30].

However, these advances in camera traps hardware also
drastically increased dataset sizes, along with the com-
plexity of the behavioral traits observed and to be quanti-
fied. To address this challenge, deep learning (DL) mod-
els were developed to support the analysis of wild animal
videos for behavior recognition, segmentation and detec-
tion [5, 8, 9, 20, 28, 38, 39, 52].

Simultaneously, wild animal datasets are being curated
to support the training of DL models to effectively classify a
wide range of behaviors across many species and geograph-
ical regions. Existing datasets annotated for wild animal be-
havior can generally be categorized in either fieldwork data,
or internet scrapped data. Fieldwork data is generally con-
strained to a small geographical location, focuses on one or
few species and mostly contains common behaviors [46].
They have the advantage of representing “real world” data.
In contrast, large scale datasets scrapped from the internet
such as MammalNet [13] contain a rich set of behaviors
and species, potentially with an over-representation of rare
behaviors that are challenging to acquire in field surveys.
Yet, they still suffer from an important domain gap between
the videos scrapped (e.g. scenes from documentaries) and
the type of data used by experts (e.g. camera trap imagery).
Both sources of data are complementary, but the field still
lacks publicly available and curated fieldwork datasets to
unify them. Additionally, insights from ethology and neu-
roscience can improve animal behavior recognition mod-
els by better representing behaviors in these wild animal
datasets [2, 43]. Indeed, currently available datasets all cat-
egorize behaviors as independent classes, often without any
kind of behavioral structure.

To address these shortcomings and advance research
at the interface between computer vision and behavioral
ecology, we collected and annotated MammAlps, a unique
camera-trap video dataset consisting of footage acquired at
three different sites in the Northern European Alps, at the
Swiss National Park (SNP). MammAlps contains 8.5 hours

of curated mammals behavior recordings. Three cameras
with varying level of field-of-view overlap were deployed at
each site to provide multi-view information (Fig. 1a). Addi-
tionally, cameras built-in microphones were used to acquire
audio and a segmentation map was created for each camera
reference scene. To better represent the hierarchical nature
of animal behavior, individual tracklets were densely anno-
tated at two levels of complexity, i.e. high-level activities
and low-level actions.

Along with the dataset, we propose the first multimodal
species and behavior recognition benchmark from the
camera trap video clips, the associated audio recordings
and the reference scene segmentation map clips (Fig. 1b).
We also provide a second benchmark consisting of summa-
rized annotations at the event level (e.g. a set of multiple
videos capturing the same ecological scene) for long-term
scene understanding task (Fig. 1c). This task consists
of multiple predictive objectives at the event level from
multiple views: Listing all detected species along with
their activities, classifying the number of individuals into
group sizes, and classifying meteorological conditions. In
this second task, spatio-temporal precision is traded for
larger spatio-temporal context which suits different needs
in behavioral ecology.

Our contributions are:
• A unique multimodal and multi-view camera-trap video

dataset containing 8.5 hours of densely annotated wild
mammals behavior acquired in the Swiss Alps (Fig. 1a).

• A multimodal species and behavior recognition bench-
mark to foster method development for wildlife monitor-
ing (Fig. 1b).

• A unique multi-view and long-term event understanding
benchmark designed to meet key unaddressed needs of
ecologists, along with an offline method to condense long
events into few visual tokens. (Fig. 1c).

2. Related Works
Wild animal behavioral datasets. Thanks to advances
in sensor design and availability [15, 46], a number of
fieldwork-based datasets for wildlife behavior monitoring
from videos became available recently (Tab. 1). LoTE of-
fers a collection of camera trap datasets (images and videos)
from South East Asia [29]. While a subset of the images are
labeled with bounding boxes, the behavior annotations for
the video dataset are not at the individual level. Brookes
et al. share a camera trap video dataset of great apes in
Africa [10]. Each video is associated with a set of behav-
ior labels that occur within the video, and a subset of the
dataset also comprises individual tracks. A larger part of
the dataset contains richer behavior descriptions, yet with-
out individual tracks. The meerkat behavior dataset con-
tains rich behavioral annotations at the individual level [37].



Dataset Video hours
(processed) Source # Videos # Species # Behav. Annot.

level
Hierarch.
Behav.

Multi-
Modal

Multi-
View

Meerkats [37] 4 Zoo 35 1 15 individual ✗ ✗ ✗
ChimpACT [31] 2 Zoo 163 1 23 individual ✗ ✓* ✗
KABR [27] 10 Drone 13k 3 8 individual ✗ ✗ ✗
BaboonLand [19] 20 Drone 30k 1 12 individual ✗ ✗ ✗
PanAf20k [10] 80 CT 20k 2 18 video ✗ ✗ ✗
PanAf500 [10] 2 CT 500 2 9 individual ✗ ✗ ✗
LoTE [29] N/A CT 10k 11 21 video ✗ ✓* ✗
PandaFormer [30] 2 CT 1431 1 5 video ✗ ✗ ✗

AnimalKingdom [33] 50 Youtube 30k 850 140 video ✗ ✓* ✗
MammalNet [13] 394 Youtube 20k 173 12 video ✗ ✗ ✗

MammAlps (clips) 8.5 CT 6k 5 11+19 individual ✓ ✓ ✗
MammAlps (events) 14.5 CT 2384 5 11 event ✓ ✓* ✓

Table 1. Prominent and publicly available video datasets of wild animals behavior monitoring. *Multimodal data is available but it is
not used for an action recognition benchmark. MammAlps is available at 10.5281/zenodo.15040901.

Similarly, ChimpACT contains individual level annotations,
along with animal body pose annotations [31]. However,
both datasets are recorded in zoos. KABR and Baboon-
Land use drone footage and provide dense behavior labels
for four African species at the individual level [19, 27].
PandaFormer [30] contains almost two hours of wild pan-
das recordings spanning five behaviors. Recently, a 1-h long
dataset with recordings of 17 bird species and seven behav-
ioral classes became available[36].

Scraping the web can also yield relevant datasets. Ani-
mal Kingdom [33] contains 50 hours of behavioral videos
spanning 850 species and 140 behavioral descriptions.
MammalNet [13] is the largest dataset of wild animal
videos, containing around 400 hours of footage from differ-
ent sources (e.g. documentaries, zoos) depicting 173 mam-
mal species and around 20 behaviors shared across mam-
mals. While some of these works propose exclusively
low-level behavior recognition [27, 30] (e.g. actions like
walking, grazing), others annotate more high-level behav-
iors [10, 13, 19] (e.g. chasing, hunting).
Multi-modal action recognition. With the development of
the transformer architecture [47] and expanding computa-
tional power, leveraging multimodal data for action under-
standing was increasingly feasible[12, 40, 41, 49, 50, 54].
LaViLa [54] learns video representations from pre-trained
large language models. TIM [12] designs time interval en-
codings to incorporate visual and audio events. In the do-
main of wildlife behavior understanding, researchers some-
times use multiple sensors (i.e. modalities) conjointly to
monitor animal behavior [1, 3, 23]. In [3], the authors
make a first attempt at using audio-visual inputs from cam-
era traps to classify two specific wild primate behaviors.

Overall, our work is most similar to [3, 10, 19, 27]. On
top of the dense behavioral annotations at the individual
level, our dataset brings additional value over all previous
datasets as (1) we follow a hierarchical representation of

behavior [2, 43], and propose separate tasks for low-level
action and high-level activity recognition; (2) we provide
audio recordings and segmentation maps from the fixed
camera reference scenes to further guide models via mul-
tiple modalities; (3) events are being recorded from up to
three points-of-view, which provides detailed information
for long-term event understanding (Tab. 1); (4) MammAlps
is the only camera trap video dataset focusing on species
from the European Alps, which is a region particularly vul-
nerable to climate change [22, 48].

3. MammAlps dataset and proposed bench-
marks

In this section, we detail the dataset collection and pre-
processing (Sec. 3.1) of MammAlps, as well as the anno-
tation protocol (Sec. 3.2) and the two benchmarks proposed
(Sec. 3.3 and 3.4). For clarity, we defined a list of terms
used throughout the study in Tab. 2.

3.1. Data collection and pre-processing

Data collection. Nine camera traps (Browning’s Spec Ops
Elite HP5) were installed in the Swiss National at three sam-
pling sites representing different ecological habitats. The
project was approved by the Research Commission of the
National Park. For each site, three cameras were positioned
with different perspectives, in order to capture the scene
from multiple angles and to provide more context for in-
terpreting behavior (Fig. 1a). Triggered by motion, videos
were collected for six weeks (between June and August
2023) during daytime and nighttime. At nighttime, videos
are recorded with an IR flash invisible to the species of in-
terest. Videos are captured at high resolution (1920×1080)
with a frame rate of 30 FPS. Cameras recorded 43 hours of
raw footage, with varying levels of false positive triggers.
Data acquisition details and sampling site descriptions can
be found in the Supplementary Materials.

https://doi.org/10.5281/zenodo.15040901
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Figure 2. Data processing pipeline and analysis. (a) Raw videos were first aggregated into events. We then applied MegaDetector [4, 24]
and ByteTrack [53] to generate animal tracklets, which were manually corrected. We annotated these tracklets for species and behavior at
two levels of complexity. (b-c) Various statistics of the dataset.

Data pre-processing. The data processing pipeline is as
follows (Fig. 2a): raw videos were first grouped into events,
corresponding to periods without more than five minutes of
inactivity at the corresponding site. We then removed false
positive videos and trimmed the true positive ones by run-
ning them through MegaDetector [4, 24]. The dense ani-
mal detection predictions of the trimmed video were used
as inputs to an adapted version of ByteTrack [53] yield-
ing individual tracks. The tracks were then manually cor-
rected in CVAT [16] to remove identity switches, lost tracks,
and any remaining false positive segment. We did not cor-
rect localization errors (e.g. body parts outside of bounding
boxes) since our proposed benchmarks do not require this
level of spatial precision. Each animal track was converted
into a video tracklet (380 × 380) padded with background
to avoid distortions. We further partition the tracklets into

short video clips displaying a single behavioral expression
(Sec. 3.2). Data processing and model parameters are de-
tailed in the Supplementary Materials.
Cameras synchronization and temporal drift. Cameras
have a built-in accuracy of one minute and are subject to
drift over time (see Supplementary Materials). Temporal
drift between camera pairs extended up to one minute in
Site 1. This drift further increases the difficulty of the sec-
ond benchmark, while reflecting fieldwork conditions. Au-
ditory data could be used for syncing.

3.2. Data annotation

Individual counts and meteorological conditions were an-
notated at the event level, while behaviors and species were
annotated at the individual level (Fig. 2b) and then aggre-
gated at the event level when necessary (Fig. 2c).



Raw
video

Raw camera trap recording of fixed dura-
tion.

Event Collection of raw videos corresponding to
an ecological event. Events are separated by
a period of inactivity of at least 5 minutes.
The events are used as input for the long-
term scene understanding task (Sec. 3.4).

Trimmed
video

Segment within a raw video contained be-
tween the first and the last MegaDetec-
tor [4, 24] detections.

Track Sequence of bounding boxes with associ-
ated individual identifier, built automati-
cally from ByteTrack [53] and MegaDe-
tector predictions [4, 24] and manually ad-
justed in CVAT [16].

Tracklet Animal-centered video of aspect ratio 1:1
cropped from an animal track labeled for
species and densely annotated for behavior.

Clip Segment within a tracklet with a single be-
havioral expression. The clips are used as
input for the behavior recognition bench-
mark (Sec. 3.3).

Table 2. Terminology used at the different stages of the data
processing and annotation pipeline.

Species and behavior annotations. Animal tracklets were
densely labeled in CVAT [16] for species and behaviors.
We focused on five species: red deer (Cervus elaphus), roe
deer (Capreolus capreolus), fox (Vulpes vulpes), wolf (Ca-
nis lupus) and mountain hare (Lepus timidus). Behaviors
were annotated by two annotators at two levels of complex-
ity [2, 43]: 1) Actions (e.g. walking, grazing), are stereotyp-
ical combinations of a few basic movements and can usually
be identified from a few frames; 2) Activities, which gener-
ally require longer spatio-temporal context and may be the
composition of multiple actions (e.g. foraging) or the in-
teraction between different individuals of the same species
(e.g. courtship) or between different species (e.g. chasing).
Each frame is labeled with one activity and either one or
two non-mutually exclusive actions. For both levels, we in-
cluded an unknown class, which indicates a behavior that
could not be identified, either because of occlusion or by
lack of information.
Individual counts. The total number of individuals in an
event is determined by visual examination of all the videos
from all viewpoints recording it. Automatic aggregation
from the track annotations was not possible, since cam-
era traps were not perfectly temporally synchronized nor
spatially referenced in a 3D model. Individual counts per

species were summed and grouped into four categories (0,
1, 2, 3+). Thus, the counting task assesses the group size
(none, individual, pair or group).
Meteorological conditions. During this process, meteoro-
logical conditions were visually determined and categorized
into four general conditions: clear weather (including day
and night), sunny, overcast and rainy (including day and
night).
Reference scenes segmentation. Since camera traps are
placed at a fixed position, a single segmentation map was
annotated for each of the scene’s viewpoints. A reference
picture (without animals) was taken with each camera af-
ter the video acquisition. We annotated the segmentation
masks for ten classes using CVAT [16]. Some classes are
unique to a site (e.g. water pound only occurs at Site 3),
while others are shared across the three sites (e.g. grass).
The segmentation maps are then processed into video clips
by generating a tracklet based on the animal tracks for every
video clip. Hence, these segmentation map clips represent
the background classes surrounding (and behind) the ani-
mal, synchronized in location and time to the animal video
clips. Examples are shown in the Supplementary Materials.

3.3. Multimodal Species and Behavior Recognition
Benchmark: B1

Action recognition is a common challenge across multiple
wildlife monitoring datasets [10, 13, 19, 27, 30, 33]. While
all of them are limited to RGB visual inputs, we enrich
the video modality with audio and reference scene segmen-
tation maps. We hypothesized that audio can help iden-
tify some specific actions such as vocalization and walking,
while segmentation maps of the reference scenes may guide
classification for behaviors involving specific environmen-
tal features (e.g. drinking from a water source). The dataset
for this task (B1) consists of 6135 short video clips span-
ning 11 activities, 19 actions and 5 species and a total of
8.5 hours of recordings. Because a sample can be annotated
with up to two actions, action recognition is a multi-label
classification task, while species and activity recognitions
are multi-class ones. We refer to behavior recognition as
the recognition task that encompasses both action and ac-
tivity recognition. The data was randomly split in a train,
validation and test set at the day level, while matching label
distributions across splits. Clips that contained occlusions
were labeled as unknown activity and actions since we con-
sidered that a model cannot provide a reliable behavioral
estimate with such limited context.

3.4. Multi-view long-term event understanding
Benchmark: B2

Benchmark B1 is a computer science-oriented benchmark
focused on a single sensor (with multiple modalities). How-
ever, to reliably identify events all the available sensors



Training task Spe.(↑) ActY.(↑) ActN.(↑)

Single Task Prediction

Spe. 0.537 - -
ActY. - 0.440 -
ActN. - - 0.447

Joint Task Prediction

Spe. + ActY. 0.437 0.443 -
Spe. + ActN. 0.539 - 0.442
ActY. + ActN. - 0.442 0.427
All. 0.487 0.428 0.458

Table 3. Comparison of single vs. joint task prediction (B1).
mAP for single and joint task predictions from video clips. In all
cases, VideoMAE is used as the base model [45]. ActY.: Activi-
ties; ActN.: Actions; Spe.: Species.

should be used. Additionally, understanding events requires
long-term context understanding (more than 16 frames), es-
pecially when expressed activities are temporally related to
other individuals (e.g. prey-predator relationships) or are
composed of multiple actions (e.g. foraging). Being able
to efficiently summarize events into broad categories is
also necessary to facilitate the annotation process of very
large camera trap datasets. To this end, we propose a sec-
ond, long-term event understanding benchmark (B2) that
takes as input the raw multi-view videos of a given event
with the objective of predicting high-level behaviors (activ-
ities), the species detected, the number of individuals (in
the grouped categories defined in Sec. 3.2) and the meteo-
rological conditions. Activity and species recognition are
multi-label classification tasks, while meteorological con-
dition and number of individuals are multi-class classifi-
cation ones. This benchmark is particularly challenging
as the event duration varies greatly (from 1 second to 12
minutes), activities and species are highly imbalanced, and
counting individuals requires to intelligently integrate in-
formation across camera views and over time. The dataset
for task B2 is composed of 397 events, 2384 videos, total-
ing 14.2 hours of recordings. Similarly as for Sec. 3.3, the
events were randomly split (at the day level) in a train and
test set. Data spans 11 activities and 5 species (the same as
for Sec. 3.3), 4 group size categories and 4 meteorological
conditions.

For both benchmarks B1 and B2, we report the mean av-
erage precision (mAP) averaged over the label categories of
each task, which is a convenient metric to compare tasks
that are either multi-label or multi-class. When applicable,
for joint predictions on all tasks, we report the mAP aver-
aged over all label categories of all tasks in column ‘Avg.’.
Models for benchmarks B1 and B2 were trained with four
and eight A100 GPUs, respectively.

Modalities Spe.(↑) ActY.(↑) ActN.(↑) Avg.(↑)

V 0.487 0.428 0.458 0.453
S 0.414 0.188 0.171 0.211
A 0.223 0.207 0.161 0.184
V+S 0.457 0.399 0.375 0.394
A+S 0.334 0.262 0.257 0.270
V+A 0.503 0.475 0.463 0.472
V+A+S 0.482 0.452 0.417 0.438

Table 4. Hierarchical action recognition from multimodal data
(B1). mAP for joint task prediction from multimodal data using
VideoMAE as the base model [45]. V: video clips; A: audio spec-
trograms; S: segmentation map clips; ActY.: Activities; ActN.:
Actions; Spe.: Species; Avg.: overall per-class average. Note: the
‘V’ row, corresponds to the last row of Tab. 3.

4. Experiments

4.1. B1: Multi-modal species and behavior recogni-
tion

In order to utilize multi-modal data for action recognition,
we adapted the VideoMAE model [45] so that it could take
video, audio and segmentation maps as inputs simultane-
ously. Specifically, we sampled 16 frames within 5 seconds
of randomly selected windows for both video and one-hot
encoded segmentation map clips. For the audio inputs, we
first found the audio clip simultaneous to the video clip and
then transformed and tokenized the original audio signal
to a spectrogram, similarly to AudioMAE [25]. To com-
pensate for the label imbalance, clips were sampled with a
probability proportional to the sum of the inverse label fre-
quencies for each class. Because test clips greatly vary in
their duration, we aggregated predictions over ten random
samples of 16 frames for every test clip.

When considering only the video modality, VideoMAE
leads to improved results for all tasks when considering
the joint task prediction (Tab. 3). Multi-modal results in-
dicate that combining the audio and video modalities im-
proves the performance over the video-only model (+0.019
mAP), with an overall class-average mAP of 0.472 (Tab. 4).
However, in our baseline model, the reference segmentation
map clips did not improve over their video-only or video-
audio counterparts, but they did increase the performance
of the audio-only model (+0.059 mAP) suggesting that this
modality contains distinct information relevant to the tasks.
More details, baselines and results per class can be found in
the Supplementary Materials.

4.2. B2: Multi-view long-term event understanding

To the best of our knowledge, due to the size no existing
video model can process multi-view and long-term (eco-
logical) data for our task of interest, so we propose a simple



Training task r Cont. Len. Spe.(↑) ActY.(↑) Met. Cond.(↑) Indiv.(↑) Avg. (↑)

Single Task Prediction

Spe. 14 4096 0.481 - - -
ActY. 14 4096 - 0.478 - -
Met. Cond. 14 4096 - - 0.681 -
Indiv. 14 4096 - - - 0.592

Joint Task Prediction

All 14 4096 0.343 0.483 0.653 0.478 0.476
All 11 8192 0.439 0.450 0.634 0.593 0.498

Table 5. mAP for long-term event understanding from the multi-view events (B2). All models use the transformer encoder from
ViT-Base. ”r”: ToME [7] reduction factor. A larger reduction factor leads to more patches being merged at the frame level and fewer
video tokens; ”Cont. Len.”: context length: number of tokens per sample; ActY.: Activities; Spe.: Species.; Met. Cond.: Meteorological
Conditions; Indiv.: Number of individuals categories.; Avg.: overall per-class average.

method as baseline. Taking inspiration from token merg-
ing in vision transformers (ToME) [7] and follow-up works
focusing on merging tokens online over time [35, 42], we
propose a fully offline method to merge the frame patch to-
kens from a pretrained vision-MAE transformer first in the
spatial and then in the temporal dimensions (see Supple-
mentary Materials). To account for the large range of video
durations, we perform token merging over time in blocks of
fixed duration and concatenate the resulting tokens, so that
long videos ultimately yield more tokens than short ones.
We add three cosine positional embeddings [18] to every
video token: 1) The information from the camera identity
for the given site (CamID); 2) the elapsed time with respect
to the event start (∆Tevent); and 3) the frame and patch
identities of the source frame tokens composing each in-
dividual video token (see Supplementary Materials for de-
tails). We input these condensed video tokens to a trans-
former backbone with four output heads, each correspond-
ing to one of the predictive tasks. We set a maximum input
context length based on the longest event and pad shorter
ones with masked tokens.

The best joint recognition performance (average per-
class mAP of 0.498) was achieved with a ToME [7] reduc-
tion factor (r) at the frame level of 11, yielding between
65 and 390 tokens per video depending on their duration
(Tab. 5). When r = 11, the overall mAP is slightly higher
(+0.022) than when r = 14 (yielding between 29 and 174
tokens per video) but not on all tasks.

We evaluated the model performance when ablating r
and the different positional embeddings (Tab. 6). We fo-
cused on the task where these embeddings are thought to
contribute the most: number of individuals classification.
Here, the model with all positional embeddings lead to the
highest scores independent of the value of r. While with
r = 14, the highest increase is observed for the single task
(+0.078 mAP), this is the opposite when r = 11 (increase

in joint task mAP of +0.109). More details, ablations and
results per class can be found in the Supplementary Materi-
als.

5. Discussion

Contributions of the audio and segmentation map
modalities. Adding the audio modality improves the
overall performance over a video-only model (Tab. 4).
When looking at specific classes (Supplementary Materi-
als), classes with distinct sounds such as marking or vocal-
izing improved for the audio-video model over the video-
only model (+0.20 and +0.09 F1-scores, respectively).
Conversely, the resting activity which is mostly silent re-
mains with a low F1-score (from 0.19 with video to 0.15
with the audio and video). While the reference segmenta-
tion map modality did not improve performance when com-
bined with videos, it did improve over the audio-only model
especially on classes involving specific scene features such
as grazing (+0.08) or walking (+0.09) despite that these
actions already emit some sound.
Impact of token merging on classifying the number of
individuals. In B2 (Sec. 3.4), classifying the number of
individuals is particularly challenging as the model needs
to integrate information from multiple views and videos.
Hence the model needs to extract individual identities. Yet,
it is common that tokens representing different animals be-
come merged by our offline approach. This is expected as
the algorithm merges tokens based on similarity and two
different individuals might show little visual differences
when they are from the same species. We address this is-
sue by both increasing the number of tokens per video and
by adding a positional embedding to the video tokens that
contains summarized information about their source frames
and patches. With the former, we aim that different indi-
viduals are represented by different tokens, while with the



ToME parameters Positional embeddings mAP

r Cont. Len./BS CamID ∆Tevent Source
Indiv.(↑)

(Single|Joint)
Indiv. 2+ (↑)
(Single|Joint)

14 4096/32 0.514|0.505 0.222|0.120
14 4096/32 ✓ ✓ 0.562|0.461 0.192|0.112
14 4096/32 ✓ ✓ ✓ 0.592|0.478 0.329|0.156

11 8192/8 0.502|0.566 0.145|0.223
11 8192/8 ✓ ✓ 0.527|0.484 0.200|0.136
11 8192/8 ✓ ✓ ✓ 0.527|0.593 0.184|0.294

Table 6. Ablation study on the effect of the number of video tokens, and the addition of the different positional embeddings on
the number of individuals recognition task (B2). All models are the transformer encoder from ViT-Base. ”r”: ToME [7] reduction
factor.”Cont. Len.”: context length: maximum number of tokens per sample; BS: Batch Size; ActY.: Activities; Spe.: Species; Met. Cond.:
Meteorological Conditions; Indiv.: Number of individuals in categories; ‘Indiv. 2+’: Predictions for groups containing more than a single
individual. Results for the ‘Indiv.’ and ‘Indiv. 2+’ tasks are provided for both the single and joint task prediction.

latter, we indicate if a single video token comes from one
or multiple discontinuous spatio-temporal segments. The
ablation realized suggests that this design successfully in-
creases the performance for test events with more than two
individuals (Tab. 6).
Hierarchical description of behaviors. The decision to
represent behaviors as a combination of one activity and
one or two actions seems to facilitate learning, as suggested
by the higher performance of joint recognition models over
single ones (Tab. 3). However, the hierarchical relationship
between activities and actions could be further exploited in
both benchmarks. For example in B2 (Sec. 3.4), predicted
actions could influence higher-level activity prediction, e.g.
chasing is a high-level activity composed of the running ac-
tion in a prey-predator context.
Dataset bias and limitations. First, annotating animal be-
havior is a complex task, as behavior categorization remains
a subjective process, prone to annotators’ biases. This con-
cerns particularly social behaviors such as those related to
courtship. These uncertainties lead to varying level of label
noise per class. To mitigate these biases, uncertain sam-
ples were tagged and discussed among annotators to ensure
annotation consistency. Additionally, the set of species in
the dataset remains limited, as all three sites were located
in the same National Park, at the same elevation and over
a short period of time (i.e. until the camera battery exhaus-
tion). This limits the possibility to learn common behav-
ioral expression across species as done in [13]. Other mam-
mal species that are common in the European Alps are ab-
sent from the dataset in its current form. Likewise, despite
containing 80GB of raw video data, the dataset of the long-
term video understanding benchmark only contains 86 test
events, which may be insufficient to properly assess the per-
formance of the model on rare classes. However, this is
the first dataset considering events-level information in the
wildlife domain and which defines a new task for the field.

Future surveys (by the authors themselves and desirably by
the wider and very active ‘AI for ecology’ community) will
progressively increase the quantity of the data for this task.

6. Conclusion and outlook

We develop MammalAlps, a novel multimodal, multi-view
camera-trap video dataset of annotated hierarchal, mam-
malian behavior in the Swiss Alps. We propose two bench-
marks to motivate the development of behavior understand-
ing methods for ecology, based on event and clip annota-
tions. In particular, we propose the first long-term event
understanding task that aims to summarize long-term eco-
logical events into meaningful information for the ecolo-
gists. We believe this task is particularly interesting to
spur research on efficient architectures that can flexibly inte-
grate multiple sources of information over diverse temporal
ranges to reach better conclusions.

MammAlps can be extended in a multitude of ways, for
instance by adding new modalities such as animal body
pose [52], segmentation masks [34], depth [51], and lan-
guage [9, 21], as all these modalities introduce complimen-
tary behavior information.

By publicly sharing MammAlps, we aim to provide rich
behavioral annotations that can fuel the development of
holistic animal behavior understanding models. These mod-
els have the potential to identify and quantify observable
behavioral traits of wild individuals, opening the doors to
AI-assisted data processing and scientific discoveries.
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[37] Mitchell Rogers, Gaël Gendron, David Arturo Soriano
Valdez, Mihailo Azhar, Yang Chen, Shahrokh Heidari, Caleb

Perelini, Padriac O’Leary, Kobe Knowles, Izak Tait, et al.
Meerkat behaviour recognition dataset. arXiv preprint
arXiv:2306.11326, 2023. 2, 3

[38] Frank Schindler and Volker Steinhage. Identification of an-
imals and recognition of their actions in wildlife videos us-
ing deep learning techniques. Ecological Informatics, 61:
101215, 2021. 2

[39] Frank Schindler, Volker Steinhage, Suzanne TS van
Beeck Calkoen, and Marco Heurich. Action detection for
wildlife monitoring with camera traps based on segmenta-
tion with filtering of tracklets (swift) and mask-guided action
recognition (maroon). Applied Sciences, 14(2):514, 2024. 2

[40] Ketul Shah, Anshul Shah, Chun Pong Lau, Celso M de Melo,
and Rama Chellappa. Multi-view action recognition using
contrastive learning. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
3381–3391, 2023. 3

[41] Md Salman Shamil, Dibyadip Chatterjee, Fadime Sener,
Shugao Ma, and Angela Yao. On the utility of 3d hand poses
for action recognition. arXiv preprint arXiv:2403.09805,
2024. 3

[42] Leqi Shen, Tianxiang Hao, Sicheng Zhao, Yifeng Zhang,
Pengzhang Liu, Yongjun Bao, and Guiguang Ding. Tempme:
Video temporal token merging for efficient text-video re-
trieval. arXiv preprint arXiv:2409.01156, 2024. 7

[43] Lucas Stoffl, Andy Bonnetto, Stéphane d’Ascoli, and
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