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Abstract 

Background Effective conservation requires understanding the behavior of the targeted species. However, some 
species can be difficult to observe in the wild, which is why GPS collars and other telemetry devices can be used 
to “observe” these animals remotely. Combined with classification models, data collected by accelerometers on a col‑
lar can be used to determine an animal’s behaviors. Previous ungulate behavioral classification studies have mostly 
trained their models using data from captive animals, which may not be representative of the behaviors displayed 
by wild individuals. To fill this gap, we trained classification models, using a supervised learning approach with data 
collected from wild red deer (Cervus elaphus) in the Swiss National Park. While the accelerometer data collected 
on multiple axes served as input variables, the simultaneously observed behavior was used as the output variable. 
Further, we used a variety of machine learning algorithms, as well as combinations and transformations of the accel‑
erometer data to identify those that generated the most accurate classification models. To determine which models 
performed most accurately, we derived a new metric which considered the imbalance between different behaviors.

Results We found significant differences in the models’ performances depending on which algorithm, transforma‑
tion method and combination of input variables was used. Discriminant analysis generated the most accurate clas‑
sification models when trained with minmax‑normalized acceleration data collected on multiple axes, as well as their 
ratio. This model was able to accurately differentiate between the behaviors lying, feeding, standing, walking, and run‑
ning and can be used in future studies analyzing the behavior of wild red deer living in Alpine environments.

Conclusion We demonstrate the possibility of using acceleration data collected from wild red deer to train behav‑
ioral classification models. At the same time, we propose a new type of metric to compare the accuracy of clas‑
sification models trained with imbalanced datasets. We share our most accurate model in the hope that managers 
and researchers can use it to classify the behavior of wild red deer in Alpine environments.

Keywords Cervus elaphus, Swiss National Park, Behavioral classification, Acceleration data, Data imbalance, Overall 
accuracy, Balanced accuracy, Specificity, Sensitivity, Neural networks, Discriminant analysis, Random forest, Support 
vector machines, Decision trees

Background
In order to effectively protect and manage a species, it 
is important to understand its behavior [1]. Although 
visual observation is the most effective method to learn 
about an animal’s behavior, observing wild animals such 
as red deer (Cervus elaphus) can be difficult as they are 
often elusive, may live in habitats with tree cover, are 
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nocturnal, move over large distances, and can easily be 
disturbed by the observer [2]. To overcome these chal-
lenges, GPS collars and other telemetry methods have 
been used to study the spatial movements of red deer, 
resource selection and seasonal migrations, as well as 
other factors affecting their movements, such as human 
activity [3–5]. While these methods can provide valuable 
knowledge about the spatiotemporal behavior of animals, 
they suffer from various limitations, most notably that it 
can be difficult to infer which behavior the animals are 
engaging in [6].

Accelerometers have become a frequent component of 
GPS collars [6]. They measure the collar’s and thus the 
animal’s intensity of movement as the difference in veloc-
ity between two consecutive measurements. Accelerom-
eters usually record multiple measurements per second. 
The data is then either saved raw (i.e., high-resolution 
[7, 8]) or averaged over predefined time intervals, such 
as 1, 5 or 10  min (i.e., low-resolution [2, 9–11]). While 
resolution can also pertain to the device’s sampling fre-
quency or bit-resolution, we solely use this term regard-
ing whether the acceleration data has been averaged 
over predefined time intervals or left in its raw state. 
Averaging and reducing the amount of data can be use-
ful when animals wear the collars over long periods and 
the amount of data storage is limited [12]. Additionally, 
working with low-resolution data requires less comput-
ing power and tends to be more accessible from a techni-
cal point of view than working with high-resolution data.

Acceleration data can be used to infer an animal’s 
relative level of activity as a result of time, seasonality, 
weather, sex or age [13, 14]. Combined with a classifi-
cation model the acceleration data can provide knowl-
edge about the animal’s behavior and has been used for 
a variety of species in the wild, including pumas (Puma 
concolor) [15], Alpine ibex (Capra ibex) [16], polar bears 
(Ursus maritimus) [17], or various cervids [2, 7–9, 11, 
18]. Previous behavioral classification models for cervids 
can be categorized by whether they were trained with 
captive [11] or wild animals [7], whether they use low- [9] 
or high-resolution [8] acceleration data and whether they 
are binary [18] or multiclass [2] models. A binary model 
classifies only two different modes, such as two behaviors 
(e.g., feeding vs. walking) or whether the animal is active 
or inactive, whereas a multiclass model has the potential 
to classify more than two behaviors (e.g., running, feed-
ing, or standing).

To the best of our knowledge, no multiclass models 
have been trained using wild cervids and low-resolution 
acceleration data. While models trained on captive ani-
mals can be very useful in certain circumstances, pre-
vious studies have illustrated that such models may 
perform worse than models trained with wild animals 

when classifying the behavior of wild animals, due to 
differences in behavior and/or habitat [17]. As there is 
always a tradeoff between the resolution of accelerome-
ter data and memory capacity, long-term studies on wild 
animals frequently use collars that only save low-reso-
lution acceleration data. For these two reasons, our first 
goal was to generate a multiclass behavioral model that 
is based both on low-resolution acceleration data and 
behavior of wild cervids.

With the adoption of sensors such as accelerometers, 
researchers are increasingly confronted with large data-
sets [19]. Machine learning (ML) algorithms can help 
find patterns in these datasets to generate new eco-
logical insight (e.g., estimating animal populations with 
unmanned aerial vehicle footage [20]) or automate previ-
ously manual tasks (e.g., classifying trail camera images 
[21, 22]). As ML algorithms have become an increas-
ingly popular tool in the field of ecology, they have also 
become easily accessible through R packages [23–31].

However, with so many different algorithms, it is dif-
ficult to know which ones to use. Previous studies have 
used discriminant function analysis [9, 11], recursive 
partitioning (i.e., classification and regression tree) [2, 
10], or random forest [7, 8]. Nathan et al. [32] compared 
the efficacy of various ML algorithms for classifying the 
behavior of griffon vultures (Gyps fulvus) and Ladds et al. 
[33] did the same with fur seals (Arctocephalus spp.) and 
sea lions (Neophoca cinerea). However, to date no such 
comparison has been performed for cervids. Our second 
goal was therefore to fill this gap by using a variety of ML 
algorithms and analyzing which ones generate the most 
accurate classification models.

GPS collars usually include multiple accelerometers 
that can measure the movement on different axes (e.g., 
left–right, up–down, forward–backward). For our third 
goal, we generated models using different combinations 
of the axial acceleration values and their derived coun-
terparts (sum, difference, and ratio). This allowed us to 
analyze not only which algorithms, but also which com-
bination of input variables generate the most accurate 
models. We also applied various normalization methods 
to the acceleration data to identify which ones generated 
the most accurate models.

Methods
Study area
All field observations were conducted in and around 
the Swiss National Park (SNP), which covers an area 
of approximately 170  km2 in eastern Switzerland [34]. 
The SNP is classified as an IUCN 1a conservation area 
(highest class of protection, wilderness area). Visitors 
must remain on the provided paths, plants may not be 
removed except for scientific reasons, meadows cannot 
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be mowed, and all hunting is forbidden. The SNP has a 
diverse topography typical for the Central Alps, with 
elevations ranging from 1380–3173 m a.s.l. The tree line 
varies between 2200–2300 m a.s.l. Most of the SNP’s area 
is subalpine and composed of around 31% forest and 17% 
meadow, while the rest is free of vegetation. The mean 
annual temperature (1991–2020) at the weather sta-
tion Buffalora was 1.1 °C, the coldest month being Janu-
ary (−  9.1  °C) and the warmest July (11  °C) [35]. Mean 
annual precipitation is 936  mm, with July and August 
being the wettest months with 118 and 130 mm of rain, 
respectively. Buffalora is located just outside the SNP and 
at a similar altitude (1971  m a.s.l.) as the observational 
locations.

Study animals and telemetry collars
In the SNP and surrounding areas, wild red deer have 
been equipped with GPS collars since 1998 as part of var-
ious research and management efforts. Wildlife officials 
of the canton of Grisons and the SNP immobilized and 
anesthetized the animals with dart guns and 3 ml Hella-
brunn mixture containing 125  mg xylazine and 100  mg 
ketamine per ml. Capturing and collaring was conducted 
according to Swiss animal welfare law (permit GR2015-
09). The animals wear the collars for a maximum of 
2 years, after which they are released via a remote drop-
off mechanism. Every individual receives a unique combi-
nation of colored ear tags, allowing visual identification. 
During the fieldwork period, we observed four individu-
als in the wild. These included two stags (No. 779 and No. 
783) and two hinds (No. 761 and No. 762). At the time, 
they were estimated to be 7, 9, 13 and 9 years old, respec-
tively. Both hinds were rearing a calf and were addition-
ally accompanied by a yearling.

The observed red deer were equipped with two differ-
ent types of GPS collars from VECTRONIC Aerospace 
GmbH, Berlin, Germany: PRO LIGHT and VERTEX 
PLUS [36, 37]. Besides the location, these collars meas-
ure intensity of movement using multiple accelerom-
eters. The antenna and electronic housing, including 
the accelerometer, are located on top of the collar and 

thus on the back of the animal’s neck. The accelerome-
ters measure acceleration continuously at 4  Hz on each 
axis as the difference in velocity between two consecu-
tive measurements. Acceleration is averaged over 5-min 
intervals per axis and provided as a unit-free number 
ranging from 0–255, with 0 representing no movement 
and 255 maximum movement. Henceforth, these values 
will be referred to as acceleration values or acceleration 
data. The different types of collars are equipped with 
accelerometers on either two (x, y) or three axes (x, y, z), 
where the x-axis measures forward–backward motion, 
the y-axis sideways (i.e., left–right) motion, and the 
z-axis up–down movements. However, as two (762 and 
779) of the four observed individuals wore collars which 
only measure x- and y-acceleration, we only used these 
two axes to generate the models. Acceleration data can 
be downloaded from the collars via UHF and VHF in the 
field or directly from the device after drop-off.

Behavioral observations
Animal observations took place during July and August 
2022. As hunting is prohibited and human activity inside 
the SNP is restricted to hiking trails, red deer are often 
active and visible in open habitats during the day. We 
observed the animals from a distance between 250–
1200  m using a spotting scope, focusing on one collared 
individual at a time, as long as it was visible [38]. The 
behavior was logged simultaneously in the ethological app 
“Behayve”, which generated time-stamped behavioral logs 
for every observational session and individual [39]. While 
using Behayve proved to be very effective in collecting 
observational data, we additionally filmed most behavior 
through the spotting scope using a digiscoping adapter 
and a smartphone. The Android app “Timestamp Camera 
Pro” [40] was used for filming, as it displays the current 
time as a watermark. The filmed behavior served as a point 
of reference in case of any logging errors and was also used 
to distinguish specific behaviors more clearly.

Similar to previous studies [2, 7, 9–11], we distin-
guished between the behaviors lying, feeding, walk-
ing, running, standing, and fighting (Table  1). We also 

Table 1 Observed behavior of wild red deer in the Swiss National Park

Behavior Description

Lying Lying on the ground either resting or ruminating

Feeding Grazing with or without moving from one spot to another; we observed 
no instances of browsing

Standing Standing in one spot, either vigilant and/or ruminating

Walking Moving slowly from one spot to another without grazing at the same time

Running Moving quickly from one place to another, either trotting or galloping

Fighting Stags only: clashing antlers with another stag
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recorded whether the animals were ruminating or not 
while lying, as well as their vertical head position while 
walking and feeding. However, our preliminary analy-
ses suggested that our models would not be able to dis-
tinguish between these modes, which is why we did not 
include them further in our study.

Data analysis
After completing the behavioral observations, the accel-
eration data was downloaded remotely from the GPS col-
lars via VHF/UHF and the behavioral data was exported 
from the Behayve app on the smartphone. The workflow 
of generating the classification models consisted of pre-
processing the acceleration and behavioral data, model-
training, and model-testing (see Additional file 1: Fig. S1 
for a schematic overview of the data analysis process).

Preprocessing involved checking the behavioral and 
acceleration data visually for errors, normalizing, trans-
forming, and labeling the acceleration data with the 
simultaneous behaviors, and splitting the data into a 
training (75%) and testing (25%) subset. To train the clas-
sification models, various algorithms were employed, 
with the acceleration data serving as input variables and 
the behavior as the output variable (Table  2). Model-
testing was conducted with the testing subset to assess 
and compare the different models and their accuracy [8, 

9, 41]. Data analysis was conducted with the R program-
ming language [42] and using RStudio [43].

Normalizing and transforming the acceleration data
As the tightness of a collar can significantly affect the 
acceleration data, and the individuals wore different col-
lar types, we tested whether inter-individual differences 
in the acceleration data existed [44]. We hypothesized 
that such differences might negatively affect the models’ 
ability to classify behaviors across all individuals [45]. 
Because we detected significant inter-individual dif-
ferences (Kruskal–Wallis χ2 = 7745.7, df = 3, p < 0.001 
for x-acceleration and χ2 = 4979.8, df = 3, p < 0.001 for 
y-acceleration), we separately applied scale-transforma-
tion to each individual and axis, thereby reducing these 
inter-individual differences [45].

Additionally, we applied minmax-normalization, which 
retains the original distribution of the values but projects 
them onto a 0–1 scale, improving the speed at which mod-
els can be trained. We also applied log-transformation to 
test whether this might have a positive effect on the mod-
els’ accuracy (see Additional file  2: Table  S1 for a detailed 
description of the normalization methods and Additional 
file 3: Fig. S2 for a visualization of their effects).

Similarly, we generated derived acceleration values, 
including the sum ( accx + accy ), difference ( accx − accy ) 
and ratio ( accxaccy

 ) of both axes. Having access to the vari-
ously transformed and derived acceleration values 
allowed us to compare their efficacy in generating accu-
rate classification models.

Combining acceleration and behavioral data
The challenge in linking behavioral and acceleration data is 
that the acceleration intervals always last 5 min (12:00–12:05, 
12:05–12:10, …), but behaviors of red deer are not consist-
ent with these intervals. As a solution, two types of labeled 
acceleration intervals were generated: pure and mixed inter-
vals (Fig.  1). During a pure interval, the animal engages 
continuously in a single behavior. During a mixed interval, 
the animal may engage in multiple behaviors, but, more 

Table 2 Formulae used to train the behavioral classification 
models

behavior ∼ xminmax + yminmax

behavior ∼ xscale + yscale

behavior ∼ xlog + ylog

behavior ∼ xminmax

behavior ∼ yminmax

behavior ∼ sum(x , y)minmax

behavior ∼ diff (x , y)minmax

behavior ∼ ratio(x , y)minmax

behavior ∼ xminmax + yminmax + ratio(x , y)minmax

Fig. 1 Time‑dependent linkage of acceleration intervals (constant time interval of 5 min) and behavioral data (variable duration). Every pure 
acceleration interval starts and ends within the same continuous behavior. Mixed acceleration intervals include all intervals during which a single 
behavior was engaged in for at least half the duration (> 2.5 min) and hence also include all pure intervals
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importantly, engages in one behavior for at least have the 
acceleration interval (> 2.5 min). As such, by this definition, 
mixed intervals also include pure intervals.

Acceleration data from wild animals will always include 
mixed intervals, especially when intervals are as long as 
5  min. For the rare and short behaviors, standing and 
walking, the number of mixed intervals was significantly 
higher than the number of pure intervals (Table 4). Using 
mixed intervals allowed us to include these behaviors and 
generate multiclass models. Additionally, by training and 
testing models with pure intervals, for behaviors that are 
likely to include a high proportion of mixed intervals, 
we risk generating artificial and inflated estimates of the 
models’ accuracies [9, 46]. For these reasons, we decided 
to use mixed intervals to train and test all our models. 
Due to the rarity of fighting, we were able to generate 
only two mixed intervals for this behavior and did not 
include this behavior in our subsequent analysis.

Train–test split
To train and test the classification models, we split the 
data into mutually exclusive datasets: 75% of the labeled 
intervals were used for training, and 25% for testing the 
models [41]. This was done separately for each behavior, 
ensuring that they roughly reflected the proportion of 
behaviors in the overall dataset.

Model‑training
The models were trained using the labeled training 
intervals and a supervised learning approach [41]. 
For every interval, the model was provided with the 
acceleration values and the corresponding behavior. 
By providing the model with a large dataset of labeled 
intervals, it “learns” to predict which behavior an ani-
mal engaged in based purely on acceleration values. 
Behavior always served as the output variable, whereas 
the input variables consisted of different combinations 

of the acceleration values and their derivatives 
(Table 2).

In our initial analysis, we found that models trained 
with minmax-normalized acceleration values classified 
behaviors more accurately than the models trained with 
log- or scale-transformed data. Therefore, all subse-
quent models were based on minmax-normalized data 
(Table 2).

For each of the mentioned formulae (Table  2), we 
trained models with various ML algorithms. Similarly 
to using different combinations of input variables, the 
purpose of using different algorithms was to find out 
which ones generated the most accurate classification 
models. The used algorithms, relevant literature and 
employed R packages are described in Table 3. Some of 
the algorithms allow the use of class weights to mitigate 
the sample size imbalance between the different classes 
(i.e., behaviors). In our preliminary analyses, we found 
that using custom weights did not improve the models’ 
accuracy, which is why we decided against employing 
them.

Model‑testing
After training the models, their accuracy was evaluated 
using the testing subset (25%) [9, 41]. Each model was 
used to predict the behavior of the testing intervals based 
on the acceleration values. The predicted behavior of 
each interval was then compared to the actual observed 
behavior of that interval (Additional file 1: Fig. S1) and a 
confusion matrix was generated.

To efficiently compare the different models, however, it 
is useful to have a single descriptive value. Previous stud-
ies have frequently used the correct classification rate 
(CCR), also known as overall accuracy [2, 9–11, 32]:

Correct classification rate

=

Number of correctly classified intervals

Total number of intervals

Table 3 Algorithms used to train the classification models, respective literature and employed R packages

Algorithm and useful literature Employed R packages

K‑nearest neighbor (KNN) [47] “Caret” [27]

Multinomial logistic regression [41, 48] “nnet” [31]

Support vector machines (SVM): linear, polynomial, radial or sigmoidal [32, 41, 49] “e1071” [29]

Discriminant analysis: linear (LDA) and flexible (FDA) [32, 41, 50] LDA: “MASS” [31];
FDA: “mda” [25]

Artificial neural network (ANN) [32, 51] “neuralnet” [24]

Naïve Bayes [52, 53] “e1071” [29]

Gaussian process [54] “kernlab” [26, 55]

Classification and regression tree (CART; simple and pruned) [41] “tree” [30]

Ensemble decision tree models: Boosted regression trees (BRT; simple and tuned) and random forest (RF) [56] BRT: “xgboost” [23];
RF: “randomForest” [28]
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Unfortunately, CCR does not consider a dataset’s 
imbalance. In our case, the most frequently labeled 
intervals were either of type lying or feeding (Table  4). 
A model that is capable of accurately classifying these 
two behaviors might therefore receive a high CCR, even 
though it poorly classifies rare behaviors (Fig. 5).

Recent studies [7, 8] have included precision (i.e., posi-
tive predictive value) and sensitivity (i.e., recall or true 
positive rate), which are calculated for each behavior sep-
arately and provide a fuller picture for imbalanced data-
sets [57]:

As some of our models predicted 0 intervals for some 
behaviors (0 false positives and 0 true positives), precision 
would divide by 0 and could therefore not be used. Speci-
ficity proved to be a useful alternative to precision [57]:

Whereas sensitivity measures a model’s ability to detect 
a positive case, specificity measures a model’s ability 
to detect a negative case. For the behavior of running, 
sensitivity evaluates a model’s ability to detect running 
intervals, whereas specificity would evaluate the model’s 
ability to classify that interval as not running (i.e., any 
other behavior such as feeding). A model can receive a 
high sensitivity or a high specificity for running by either 
classifying all intervals as running or 0 intervals as run-
ning, respectively. Balanced accuracy counteracts this 
possibility by calculating the mean of sensitivity and 
specificity for each behavior [57, 58]:

After evaluating balanced accuracy for each model 
and behavior, the unweighted mean of all these balanced 
accuracies per model was calculated. We termed this 
average the macro-balanced accuracy (MBA). Because 
the balanced accuracy for each behavior is weighted 
equally in this metric, a model can only receive a high 
MBA if it can predict each behavior sufficiently well, 
regardless of how rare or frequent it is (Fig. 5). The MBA 
allowed us to compare the different models with each 
other and draw conclusions about which combinations 

Precision =
True positives

False positives + True positives

Sensitivity =
True positives

True positives + False negatives

Specificity =
True negatives

True negatives + False positives

Balanced accuracy =
sensitivity+ specificity

2

of input variables and ML algorithms generate the most 
accurate models.

Results
Behavioral observations
We were able to observe the four collared red deer on 35 
out of the 57 field days, resulting in a behavioral data set 
of 160 h. However, the frequency at which we observed 
individuals and behaviors was strongly imbalanced 
(Fig. 2). While we frequently observed the animals lying 
or feeding, we rarely observed them running, walking, or 
standing. Further, we were rarely able to observe individ-
ual 783.

Additionally, some behaviors occurred for a much 
shorter duration than others. While the animals lay 
down, on average, for 34.77 min at a time, they walked, 
on average, for only 1.16  min at a time (Table  4). As a 
result, there were little to no pure intervals for the short 
duration behaviors walk, stand, and run (Table 4). Includ-
ing mixed intervals provided a significant increase in the 
number of intervals for these behaviors and allowed us 
to generate a multiclass model, which would have been 
impossible with pure intervals only.

Model performance
In total, we generated 144 classification models (16 algo-
rithms * 9 formulae). The performance of each model is 
listed in Additional file  4: Table  S2. The most accurate 
model had an MBA of 81%, and balanced accuracies of 
90% (lie), 57% (stand), 88% (feed), 71% (walk), and 100% 
(run). The model was trained using linear discriminant 
analysis. The models trained with flexible discriminant 
analysis performed almost always equally well as the 

Table 4 Number of observations, durations, and number of 
mixed/pure intervals per behaviors

The number (N) of observational instances per behavior with their mean, 
median, minimum, and maximum duration in minutes (min), and the respective 
number (N) of pure and mixed intervals. Pure intervals are defined as intervals 
during which the animal engaged in only one behavior. Mixed intervals are 
defined as intervals during which a single behavior was engaged in for at least 
half the duration (> 2.5 min), and hence also include pure intervals.

Behavior Lying Standing Feeding Walking Running

Observations (N) 142 148 312 156 18

Mean (min) 34.77 1.49 14.11 1.16 2.39

Median (min) 23.51 0.66 7.19 0.54 1.42

Minimum (min) 0.03 0.03 0.03 0.03 0.18

Maximum (min) 211.18 20.12 119.70 11.67 10.43

Pure intervals (N) 752 5 601 2 4

Mixed intervals (N) 884 25 771 26 5
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linear model. The model was trained using the following 
formula:

The model generated the confusion matrix detailed in 
Table 5.

There were significant differences in the perfor-
mance of the models according to the input vari-
ables used to train them (Kruskal–Wallis χ2 = 79.855, 
df = 8, p < 0.001; Fig.  3). The six models with the high-
est MBA were all trained using either the input 
variables  xminmax +  yminmax + ratio(x,  y)minmax or 
 xminmax +  yminmax. These two groups of models also 
had a higher median MBA than all other formula 

behavior ∼ xminmax + yminmax + ratio(x, y)minmax

groups. The models trained with the input variables 
diff(x,  y)minmax and ratio(x,  y)minmax, on their own, had 
the lowest median accuracies. However, when com-
bined with  xminmax +  yminmax, using ratio(x,  y)minmax gen-
erally improved the MBA. The models trained only with 
 xminmax,  yminmax, or sum(x,  y)minmax were intermediate 
with regard to their median classification accuracy. In 
terms of normalization methods, the minmax-normal-
ized models seem to outperform, on average, the scale-
normalized and log-transformed models.

The type of algorithm also had a significant impact 
on the models’ MBA (Kruskal–Wallis χ2 = 21.043, 
df = 8, p = 0.007; Fig.  4). The models with the highest 
median MBA were trained using the Gaussian process 

Fig. 2 Duration of observed behaviors per individual (females 761 and 762, males 779 and 783)

Table 5 Confusion matrix for the most accurate classification model

Confusion matrix of the model with the highest macro‑balanced accuracy (MBA). The model was trained using discriminant analysis and the input variables 
 xminmax +  yminmax + ratio(x, y)minmax

Observations

Lying Standing Feeding Walking Running

Prediction Lying 204 1 22 1 0

Standing 0 1 0 0 0

Feeding 16 4 166 2 0

Walking 1 0 5 3 0

Running 0 1 0 1 2
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algorithm. However, the 11 models with the highest 
MBA were all trained using discriminant analysis or 
ensemble decision tree algorithms (Additional file  4: 
Table S2). Interestingly, discriminant analysis generated 
the models with the highest and some of the lowest 
MBA. The models with the lowest median MBA were 
trained using KNN, ANN, SVM, and CART. In general, 
there was no algorithm that always outperformed all 
others. However, discriminant analysis and ensemble 
decision tree models generated the most accurate mod-
els when combined with the right set of input variables 
and performed relatively similar at their upper end.

Figure 5 visualizes the benefits of using the MBA as a 
metric. Each point represents a model. While the verti-
cal axis denotes that model’s MBA and CCR, respectively, 
the horizontal axis denotes its balanced accuracy for the 
behavior running. Running serves as an example for any 
of the rare behaviors, including standing and walking. 
Plot a demonstrates that a model’s ability to accurately 
classify running has as significant effect on its MBA 
(R = 0.7). If the model is unable to accurately predict 

running, it will not receive a high MBA. Plot b demon-
strates that a model’s ability to accurately classify running 
has little effect on the CCR (R = 0.24). The model can still 
have a high CCR even though it predicts the rare behav-
ior poorly. The MBA therefore provides a more balanced 
perspective on a model’s ability to classify all behaviors, 
regardless of how frequent or rare they are.

Discussion
Generalizability of the models
There have been a number of studies that have generated 
multiclass classification models for cervids in captivity 
[2, 8–11] or binary models for wild cervids [18, 59–63]. 
However, so far there have been fewer studies to have 
generated multiclass models for wild cervids [7] and, to 
our knowledge, no such studies for wild cervids living in 
an alpine environment or using low-resolution (5-min) 
acceleration values.

The most obvious reason for a lack of models trained 
with wild cervids is the significant increase in the effort 

Fig. 3 Boxplot visualizing each model’s macro‑balanced accuracy (MBA) (Additional file 4: Table S2). Each model (point) was trained with a different 
combination of input variables and algorithm. In this figure, the models are vertically grouped by the combination of input variables that was used 
to train them
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it takes to collect sufficient behavioral data. For the 160 h 
of behaviors we observed, we spent roughly 570 h in the 
field. Collecting this amount of behavioral data would, 
most likely, be much more time-efficient with captive 
animals. However, this raises the question whether a 
model trained on captive red deer would be generaliz-
able to wild animals [8, 17, 33, 64]. Red deer in captiv-
ity might show different behaviors than wild red deer or 
move differently, depending on the landscape they live in. 
Although observing captive animals might be much more 
time-efficient than observing wild animals, we argue that 
it is worthwhile collecting observational data from wild 
animals, even if only used for testing the models.

Spreading the fieldwork phase over a longer period 
might allow for models that are generalizable to differ-
ent seasons and might also provide observational data 
of additional individuals and behaviors. Most of the red 
deer in the SNP move from their alpine summer habitats 
to their winter habitats at lower elevations around Octo-
ber and November [4, 65]. Due to differences in their 
habitat and possibly in their behavior, the animals might 

move differently in the winter than in the summer. Addi-
tionally, as red deer undergo seasonal changes in their 
body weight, it would be valuable to test whether the 
“summer models” are still generalizable to red deer in the 
winter [44, 66].

Data imbalance
Similarly to previous studies, we were able to observe the 
behaviors lying and feeding much more frequently and 
over longer durations than other behaviors such as run-
ning, fighting, standing, and walking (Fig. 2; [2, 7–9, 11]). 
Additionally, some behaviors tend to occur for less than 
the duration of the 5-min acceleration intervals (Table 4). 
For these behaviors, we only had access to a very small 
number of pure intervals and would have been unable 
to generate a multiclass model (Table  4). While having 
access to shorter acceleration intervals (e.g., 1 min dura-
tion) or even the acceleration data in its raw state (i.e., 
high resolution) would be ideal, this is not always pos-
sible. This might be due to working with older data, or, 
as in our case, due to memory storage constrains and the 

Fig. 4 Boxplot visualizing each model’s macro‑balanced accuracy (MBA) (Additional file 4: Table S2). Each model (point) was trained with a different 
combination of input variables and algorithm. In this figure, the models are vertically grouped by the category of algorithm that was used to train 
them
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long employment period of the GPS collars (> 2  years). 
We were able to mitigate this issue by using mixed inter-
vals, which allowed us to label significantly more inter-
vals for the rare and short behaviors than if we had relied 
only on pure intervals. Nevertheless, we suggest that 
authors of future behavioral classification studies care-
fully consider which type of acceleration data fits their 
research goals, yet still complies with the technical con-
strains imposed by the storage capacity and employment 
duration of the GPS collars.

Of the studies which generated multiclass classifica-
tion models for cervids with low-resolution acceleration 
data, only Gaylord & Sanchez [9] used mixed intervals. 
Loettker et al. [2], Heurich et al. [10] and Naylor & Kie 
[11] worked exclusively with pure intervals. The viabil-
ity of using mixed intervals can be evaluated from dif-
ferent angles. On the one hand, every classified mixed 
interval is, per definition, also misclassified. To allevi-
ate this issue, we only labeled mixed intervals where 
the animal engaged in one behavior for at least half of 
that interval’s duration. On the other hand, Gaylord & 
Sanchez [9] argue that “datasets from free-ranging ani-
mals inherently include mixed intervals… reliance on 
pure-interval models to classify behaviors of free-rang-
ing animals should be avoided” (p. 64). They argue that 
relying on pure intervals models can lead to an inflated 
sense of behavior classification accuracy.

Another issue stemming from the behavioral imbal-
ance pertains to the evaluation of the models’ accu-
racy. Previous studies have primarily used the CCR 

which evaluates a model’s overall accuracy at classify-
ing behaviors [2, 9–11]. However, when faced with a 
strong data imbalance, as in our case, the CCR can pro-
vide an inflated sense of a model’s accuracy because it 
is strongly biased towards the behaviors that are most 
commonly represented in the dataset (Fig.  5). More 
recent studies have used alternatives to the CCR when 
evaluating the performance of behavioral classification 
models. Kröschel et  al. [7] used CCR, sensitivity and 
the positive predictive value for their roe deer models. 
Kirchner et  al. [8] used recall and precision for their 
moose models.

In our case, we decided to use the MBA. The MBA 
is the mean of each behavior’s balanced accuracy and 
thereby weighs a model’s ability to classify each behav-
ior equally, regardless of how rarely or frequently it has 
been observed. As such, the MBA avoids the CCR’s bias 
towards the more commonly represented behaviors. 
However, the MBA is not without its own limitations. 
When working with very small classes, such as run-
ning or walking, a small number of misclassifications in 
these behaviors can have an inflated effect on the final 
MBA. Whichever metric one might use, we suggest 
that authors of future behavioral classification models 
try out various metrics to test which ones fit their data-
set situation and research questions [57].

Fig. 5 Scatterplots visualizing the correlation between each models’ balanced accuracy for running and its a macro‑balanced accuracy (MBA), 
as well as its b correct classification rate (CCR). Each point denotes one model. Running correlates much stronger with MBA than it does with CCR, 
illustrated by the regression line (blue; 95% confidence interval), Pearson correlation coefficient (R) and respective p value
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Model performance
By using 16 different ML algorithms, as well as 9 differ-
ent combinations of input variables, we were able to train 
and test 144 different models. This allowed us to draw 
conclusions about what generates accurate models with 
respect to the used input variables, normalization meth-
ods and algorithms.

While there was no combination of input vari-
ables that always outperformed all other input 
variable combinations, using  xminmax +  yminmax or 
 xminmax +  yminmax + ratio(x,  y)minmax generally generated 
the most accurate models (Fig.  3). Interestingly, models 
trained with only ratio(x,  y)minmax as an input variable 
had the lowest median MBA. However, when combined 
with  xminmax +  yminmax, using ratio(x,  y)minmax generally 
improved the MBA. Visually, the behaviors running and 
walking appear to have a higher x-to-y acceleration ratio, 
which might explain why using ratio as an additional 
input variable improves these models (Additional file  3: 
Fig. S2).

As there were significant differences in the accelera-
tion values from the four individuals, we expected that 
decreasing these inter-individual differences might 
improve the models’ ability to classify the behavior of 
all individuals. We were surprised that the models using 
minmax-normalized acceleration data (thereby retain-
ing inter-individual differences) had, on average, a higher 
MBA than models trained with scale-normalized acceler-
ation data (Fig. 3). Retaining inter-individual differences 
and the original distribution of acceleration values seems 
to be vital to generating accurate classification models.

Similar to the combination of input variables, there 
was no type of algorithm that outperformed all other 
algorithms for every model (Fig.  4). However, the best-
performing models were all trained with discriminant 
analysis or ensemble decision tree algorithms. In their 
classification models for griffon vultures, Nathan et  al. 
[32] found that RF outperformed SVM which outper-
formed discriminant analysis. While we were also able 
to generate accurate models with RF, we found that dis-
criminant analysis had the highest and SVM the lowest 
median MBA. Similar to Nathan et al. [32], Ladds et al. 
[33] also found that SVM generally performed well for 
classifying the behaviors of fur seals and sea lions. Simi-
lar to our study, Ladds et al. [33] were also able to gener-
ate accurate models with RF and BRT. The differences in 
these studies’ findings should underline the importance 
of trying out and comparing various algorithms for each 
new dataset and classification process.

Regarding the differences within algorithm groups, we 
did not find that pruning CART or tuning BRT resulted in 
a significant improvement in their accuracy. In fact, tun-
ing and pruning seemed to have had a slightly negative 

effect on the models’ MBA (Fig.  4). Similarly, whether 
we used flexible or linear discriminant analysis seemed 
to have had little to no effect on the models’ MBA. How-
ever, it is possible that for other datasets, these variations 
improve the models’ accuracy and should therefore not 
be dismissed [41].

The variation of the MBA was much greater within the 
algorithm groups (Fig. 4) than within the input variable 
groups (Fig. 3). This wider variation might be caused by 
the specific algorithms within each algorithm group per-
forming very differently, or by the strong effect of the 
used input variables. Whichever the case, the different 
combinations of input variables should be tested just as 
rigorously as the algorithms, when deciding on which 
ones to use.

While we purposefully did not use the CCR to deter-
mine the best model, it still provides an interesting point 
of comparison in relation to previous similar studies. In 
contrast to the model with the highest MBA, the model 
with the highest CCR, was trained using  xscale +  yscale in 
combination with multinomial logistic regression (Addi-
tional file 4: Table S2). The model had a low MBA of 68%, 
but a high CCR of 90%, comparable to the results of pre-
vious studies that used low-resolution acceleration data 
to generate multiclass behavioral models for cervids [2, 
9–11].

Conclusion
In conclusion, this study found that while it is possible 
to train classification models based on the behavior of 
wild red deer, one is faced with a relatively small dataset, 
especially for rare or short-lived behaviors, such as stand-
ing, walking, running, and fighting. We suggest the use 
of mixed intervals to deal with this difficulty and argue 
that mixed intervals provide a more realistic depiction of 
a model’s accuracy. Finally, we recommended the use of 
alternative metrics in addition to the CCR when evalu-
ating the accuracy of behavioral classification models. 
While we decided to use MBA, there are other metrics 
that could be used in this scenario [57].

The behavioral classification models for wild red 
deer living in an alpine environment, generated as part 
of this study, have various potential applications. For 
example, such a model could be used to generate activ-
ity budgets for unobserved but collared wild red deer 
and analyze how human activity, seasonality, weather, 
or climatic changes affect their behavior. Specifically, 
we could evaluate how a red deer’s daily activity budget 
changes during the hunting season or during unusu-
ally warm or cold periods. In a future project, it would 
be interesting to generate a web-based user interface 
to allow people to easily generate behavior sequences 
based on acceleration data, without expertise in R. For 
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now, anyone familiar with programming in R and work-
ing with acceleration data, can use the attached R-script 
and model to turn their acceleration data into a timed 
behavioral sequence, provided the acceleration data 
ranges between 0–255, is averaged over 5-min intervals 
and includes x- and y-acceleration values (Additional 
file 5: Script S1). Finally, we hope that our comparative 
analysis of using different ML algorithms and input var-
iables to generate classification models, our approach 
to labeling mixed intervals, and the suggested usage of 
the MBA as an alternative to the CCR can prove useful 
for future studies working with wild cervids and accel-
eration data.
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