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Michele Torresani c, Christian Rossi d, Carlos P. Carmona e, Francesco de Bello b,f, 
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c Free University of Bolzano-Bozen, Faculty of Agricultural, Environmental and Food Sciences, Universitätsplatz 5 - piazza Università, 5, 39100 Bozen-Bolzano, Italy 
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A B S T R A C T   

Biodiversity monitoring is constrained by cost- and labour-intensive field sampling methods. Increasing evidence 
suggests that remotely sensed spectral diversity (SD) is linked to plant diversity, holding promise for monitoring 
applications. However, studies testing such a relationship reported conflicting findings, especially in challenging 
ecosystems such as grasslands, due to their variety and high temporal dynamism. It follows that a thorough 
investigation of the key factors influencing these relationships, such as the metrics applied (i.e., continuous, 
categorical) and phenology (e.g., flowering), is necessary. The present study aims to assess the effect of flowering 
on the applicability of six different SD metrics for plant diversity monitoring at the local scale and to investigate 
how spatial resolution affects the results. Taxonomic diversity was calculated based on data collected in 159 plots 
of 1.5 m × 1.5 m with experimental mesic grassland communities. Spectral information was collected using a 
UAV-borne sensor measuring reflectance across six bands in the visible and near-infrared range at ~2 cm spatial 
resolution. Our results showed that, in the presence of flowering, the relationship between SD and plant diversity 
is significant and positive only when SD is calculated using categorical metrics. Despite the observed significance, 
the variance explained by the models was very low, with no evident differences when resampling spectral data to 
coarser pixel sizes. Such findings suggest that new insights into the possible confounding effects on the SD-plant 
diversity relationship in grassland communities are needed to use SD for monitoring purposes.   

1. Introduction 

The current global biodiversity change rate makes species conser-
vation one of the most pressing priorities of our times (Wilting et al., 
2017). While growing attention has been paid to species conservation, 
biodiversity evaluation and monitoring are still limited and lack stan-
dardized methods for quick and scalable data collection (Palmer et al., 
2002; Skidmore et al., 2015; Wang and Gamon, 2019). In turn, remote 
sensing represents a continuous source of data which potentially con-
cerns various aspects of biodiversity, collected across diverse scales in a 

uniform, borderless, and repeatable way (Turner, 2014). Among the 
available approaches for the remote monitoring of biodiversity, 
increasing evidence suggests that remotely sensed spectral diversity 
(SD), i.e., the variability in the electromagnetic radiation reflected by 
(vegetated) surfaces measured in the visible, near-infrared and 
short-wave infrared regions (400–2400nm), is linked to plant diversity 
(Rocchini et al., 2015; Schweiger et al., 2018). The SD concept was 
originally framed within the spectral variation hypothesis (SVH; Palmer 
et al., 2002), which assumes an indirect relationship between spectral 
and plant diversity through environmental ‘surrogacy’, i.e., the 
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landscape heterogeneity captured by remote sensing (Hauser et al., 
2021; Torresani et al., 2019). When relying on medium/coarse spatial 
resolution data, the link between spectral and plant diversity can only be 
indirect, as pixel size exceeds the size of individual plants. Conversely, 
multispectral data with fine spatial resolution provided by uncrewed 
aerial vehicles (UAVs), i.e., in the order of magnitude of centimeters, 
hold promise for capturing the direct link between the spectral and plant 
diversity at the leaf and canopy level in herbaceous communities (Rossi 
et al., 2021a; Thornley et al., 2023). However, when the pixel size 
corresponds to the size of individual plants (or even the sub-individual 
level), the intra-specific (or intra-individual) variability in the plant 
optical traits can play a role in the SD-biodiversity relationship. 

Studies testing the relationship between SD and plant diversity at 
fine scales have reported conflicting findings, especially in challenging 
ecosystems such as grasslands, the biodiversity of which is threatened by 
their degradation and fragmentation due to anthropogenic factors 
(Thornley et al., 2023). Their vast global distribution (Gibson, 2009) and 
the broad range of ecosystem services they provide make grassland 
conservation a priority (Hein et al., 2006; Suding, 2011), yet their 
extensive monitoring is prevented by logistical constraints. Due to its 
efficiency and cost-effectiveness, SD-based plant diversity monitoring 
offers an appealing alternative to traditional sampling techniques in 
grasslands. 

Nonetheless, the path towards the routine implementation of SD into 
grassland monitoring is hampered by the high temporal and spatial 
variability of such ecosystems, which often exhibit a complex commu-
nity structure, particularly in natural or semi-natural grasslands (Wilson 
et al., 2012). Recent studies have highlighted the impact of plant 
phenology (e.g., flowering, leaf emergence and senescence; Rossi et al., 
2021b; Thornley et al., 2022) when addressing the relationship between 
SD and plant diversity in grasslands. Despite the dynamism of grassland 
communities, acquiring repeated intra-annual spectral data is time- and 
resource-consuming. It follows that spectral data are usually acquired to 
ensure a temporal match with vegetation surveys when the presence of 
dead biomass and exposed soil is supposed to be the lowest (Asner, 
1998). However, this also implies that the species present would 
potentially be flowering, causing unwanted additional sources of spec-
tral variability. The presence of flowering is likely to have an impact on 
the SD of a community, as it leads to a high variation in important op-
tical traits and, thus, in the spectral signatures of individual species 
(Conti et al., 2021; Fassnacht et al., 2022; Gholizadeh et al., 2019; 
Heumann et al., 2015; Thornley et al., 2022). Being non-photosynthetic 
organs with distinct spectral features, especially in the visible domain 
(Schiefer et al., 2021), flowers can affect SD, and the extent of this 
impact is likely to depend on the characteristics of the SD metrics 
applied. 

The metrics used to quantify SD can be either continuous (i.e., based 
on variation in traditional vegetation reflectance indices or on the full 
spectral information) or categorical (i.e., relying on the categorization of 
the spectral space; Féret and Asner, 2014; Wang and Gamon, 2019). 
Although continuous SD metrics are the most represented and widely 
tested, they show weakness in capturing plant diversity by measuring 
the degree of contrast in the reflectance, which is more related to the 
specific identity of the plant species rather than their quantity. Indeed, 
in cases where a few spectrally distinct species are present in a com-
munity, the spectral heterogeneity can be very high even if the plant 
diversity is low (Fassnacht et al., 2022). Following the same reasoning, 
continuous SD metrics are likely to be influenced by flowering, soil 
presence, or the amount of biomass. In contrast, categorical SD metrics 
are considered less sensitive to extreme reflectance values (e.g., from 
background material) as extreme values would represent distinct cate-
gories alongside other equally significant ones (Rossi et al., 2021a). Even 
though some studies have tested and compared different SD metrics 
(Frye et al., 2021; Gholizadeh et al., 2018, 2020; Perrone et al., 2023; 
Rossi et al., 2021a; Schmidtlein and Fassnacht, 2017; Warren et al., 
2014), no consensus has been reached on which metrics would be the 

best proxy for plant diversity during flowering. 
The aim of this study is to assess the applicability of SD for plant 

species richness monitoring at the local scale. Here we test six different 
SD metrics (detailed in Table 1) while considering flowering as a po-
tential factor affecting the spectral-plant diversity relationship using 
ground observations and multispectral UAV data from mesic grassland 
communities in South Bohemia (Czech Republic). Additionally, we 
investigate if changing the spatial resolution (from 2 cm to 5 cm) in-
fluences the observed relationship. Building upon Conti et al. (2021) 
findings, this study also considers the influence of bare soil and shadows 
on the relationship between spectral and plant diversity. 

2. Material and methods 

2.1. Field data 

Our study is based on vegetation data collected in a permanent 
grassland experiment run by the University of South Bohemia and 
located in a mesic meadow in the Vysočina region (South Bohemia, 
Czech Republic, 49.331 N, 15.003E). As Galland et al. (2019) described, 
the sowing experiment consisted of 40 mesic grassland communities 
covering independent gradients of plant functional and phylogenetic 
diversity. These experimental communities derived from a specific 
treatment, i.e., either the sowing of a combination of six species drawn 
from a pool of 19 mesic meadow species naturally present in the area or 

Table 1 
Description of the spectral diversity metrics used in this study.  

Spectral 
diversity metric 

Description Reference Dedicated package 

Standard 
deviation of 
NDVI 
(sdNDVI) 

The square root of the 
variance in the NDVI 
values 

(Wang 
et al., 
2016)  

Rao’s Q entropy 
index (RaoQ) 

This index quantifies 
the difference in 
reflectance values 
between two pixels 
drawn randomly with 
replacement from a set 
of pixels by considering 
their abundance and 
their pairwise distance 

(Rocchini 
et al., 
2021a) 

rasterdiv R 
package, v. 0.3.2 ( 
Rocchini et al., 
2021c) 

Mean pairwise 
distance 
(MPD) 

Mean pairwise 
Euclidean distance 
between pixels in the 
space defined by the 
first two principal 
components of the 
spectral data 

(Rocchini 
et al., 
2004)  

Convex hull 
volume 
(CHV) 

The smallest possible 
convex volume 
encompassing all pixels 
using the first three 
principal components of 
the spectral data 

(Dahlin, 
2016)  

Coefficient of 
variation of 
reflectance 
(CVrefl) 

Average coefficient of 
variation over all 
available wavelengths 

(Wang 
et al., 
2016)  

Spectral species 
richness 
(SpSpR) 

The number of spectral 
species within each 
plot. Spectral species 
are identified based on 
k-means clustering of a 
random subset of the 
first three components 
of the UAV image and 
then applied to the 
whole PCA image to 
assign a cluster to each 
pixel. 

(Féret and 
Asner, 
2014) 

biodivMapR R 
package, v.1.9.4 ( 
Féret and de 
Boissieu, 2020, 
2022)  
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from monoculture treatments. Each six-species community was sown in 
two randomly situated 1.5 m × 1.5 m plots (one fertilized and one un-
fertilized), while monoculture plots were sown in three replicates each. 
Thus, the study site encompassed a total of 196 plots, with a buffer zone 
of 0.5 m between them (Fig. 1). Due to the subsequent processing of UAV 
data (i.e., excluding corrupted areas of the orthomosaic), only 159 out of 
the 196 plots were considered in this study. Plant species composition 
within each plot was measured in June 2019. The actual species richness 
(SR) of the considered experimental communities varied between 12 
and 36 species due to the later plot invasion by spontaneously colonising 
species. 

2.2. Spectral data 

We used multispectral UAV imagery with ~2 cm spatial resolution 
(80% frontal and 70% side tile overlapping, 30 m flight altitude) ac-
quired shortly after vegetation sampling (July 2019) using a Kingfisher 
multicopter (Robodrone Industries, Brno, Czech Republic) equipped 
with a Micro-MCA6 camera (Tetracam Inc., Chatsworth, CA, United 
States) measuring reflectance across six bands in the 490–900 nm range 
of the electromagnetic spectrum with a 10-20 nm-width. The obtained 
spectral data were processed using a Structure from Motion and Multi- 
View Stereo algorithms in the Agisoft Metashape image-matching soft-
ware (Agisoft LLC, St. Petersburg, Russia) to generate an ortho-mosaic. 
Georeferencing was performed with spatial error of 2 cm using ground 
control points surveyed through a Leica GPS1200 GNSS receiver (Leica 
Geosystems AG, Heerbrugg, Switzerland) in RTK mode. The ortho- 
mosaic was radiometrically calibrated using white and grey calibra-
tion targets for which the spectral properties were known from 
manufacturer-provided spectrometer measurements. The ortho-mosaic 
portions exhibiting processing artefacts were excluded from further 
analyses, resulting in 37 out of 196 study plots being left out. 

Previous studies have reported that the presence of bare soil, due to 
its spectrum being substantially different from that of the vegetation, 
proved to significantly deteriorate SD performance in quantifying plant 
diversity (Gholizadeh et al., 2018; Hauser et al., 2021). Moreover, the 
spectral signal has proven to be sensitive to the vertical structure of the 
plant community, since a complex vertical structure of the community 
may generate an “occlusion effect” that would lead to the obscuration of 
shorter species and the presence of shadowed pixels (Conti et al., 2021). 
Here, we masked shadowed areas and non-vegetated pixels from the 
multiband ortho-mosaic to mitigate their influence on SD. Bare soil 
pixels were masked using an NDVI threshold of 0.3, while shadowed 
pixels were identified and removed through an Expectation Maximiza-
tion (EM) unsupervised classification. Moreover, the presence of flow-
ering plants within the plots was assessed visually from an RGB 
composite and attributed to each plot (i.e., a plot was classified as 
flowering given >10% flower cover). Finally, we rescaled the ortho- 
mosaic to 5-cm spatial resolution (using bilinear resampling) to test if 
coarsening the spatial resolution can mitigate the effect of intraspecific 
(and intra-individual) variability of optical traits. 

2.3. Spectral diversity metrics 

As there is no consensus on the best-performing method to quantify 
SD, we applied six different SD metrics within the 1 m × 1 m core area of 
each 1.5 m × 1.5 m experimental plot. Specifically, we computed six 
continuous SD metrics, namely: the standard deviation of NDVI 
(sdNDVI), the Rao’s Q entropy index (RaoQ), the mean pairwise dis-
tance of reflectance values (MPD), the coefficient of variation of the full 
spectral range reflectance (CVrefl), and the convex hull volume (CHV). 
We also computed one categorical metric, spectral species richness 
(SpSpR) (see Table 1 for further details on the metrics used). For the 
spectral species mapping we used the biodivMapR R package (for a 

Fig. 1. (a) Location of the study area. (b) Example of a 1.5 m × 1.5 m surveyed plot. (c) Natural-colour mosaic of the whole study area.  
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complete description of the method, please see Féret and de Boissieu, 
2020). To perform the mapping, the number of k clusters was set to 50 (a 
realistic number of the spectral species present based on ground data 
and as a trade-off between performance and computational efficiency). 
The unsupervised clustering of a random subset of pixels was repeated 
eight times and the mean SpSpR value calculated from these repetitions 
was assigned to each respective plot. 

2.4. Statistical analyses 

To test the relationship between SR and each of the metrics tested, 
we modelled the variation in SD through Generalized Linear Mixed Ef-
fects Models (Mcculloch and Neuhaus, 2014) (Gamma family, log link) 
using the lme4 R package v.1.1–33 (Bates et al., 2015). In our models, 
SR and the binary variable of flowering (presence/absence) were used as 
fixed-effect predictors. At the same time, the type of grassland com-
munity (i.e., monoculture, low/high functional diversity, low/high 
phylogenetic diversity, fertilized/unfertilised) was included as a random 
effect to account for the interdependence among communities in our 
dataset. To assess the goodness of fit for our models, we calculated the 
marginal (R2

m) and conditional (R2
c) pseudo-R squared (Nakagawa et al., 

2017) for each model. These metrics quantify the proportion of variance 
explained by fixed effects and the complete model (i.e., both fixed and 
random effects), respectively. We calculated R2

m and R2
c using the r. 

squaredGLMM() function of the MuMIn R package, v.1.43.17. Data and 
scripts are provided at https://github.com/MichelaPerrone/SVH_Bene 
sov.git under CC-BY license. 

3. Results 

When comparing the spectra of two sample plots (i.e., one with and 
one without flowering), significant differences were observed in the 
distribution of reflectance values in all six spectral bands (Kolmogorov- 
Smirnov Test p-values <0.01) at both spatial resolutions tested. Fig. 2 
shows the spectra and pixel values distributions for the 2-cm ortho- 

mosaic; the same information for the 5-cm ortho-mosaics can be found 
in Appendix A. The strongest differences (i.e., larger effect sizes, or 
higher Kolmogorov’s D values) in the distribution of values between the 
experimental plots were observed for the Green, Red, and NIR bands 
(Table 2), indicating that flowering affects both the visible and NIR re-
gions of the spectrum. Besides, we observed that coarsening the spatial 
resolution from 2 to 5 cm did not impact the results above. 

At both the tested spatial resolutions, the models showed a signifi-
cant and positive relationship between SR and SD only when SD was 
measured using categorical metrics (i.e., spectral species richness) 
(Table 3; Fig. 3). Conversely, when the SD response variable was 
calculated using continuous metrics, flowering was the only variable 
significantly (positively) associated with SD (Table 3; Fig. 3). In such 
models, we observed relatively high R2

m values, ranging between 0.24 
(sdNDVI, 2-cm spatial resolution) and 0.51 (CVrefl, 2-cm spatial reso-
lution). In contrast, models based on spectral species richness had very 
low R2

m values (Table 3; Fig. 4), with no evident differences observed 
between the two spatial resolutions. Despite the significant relationship 
between SD and SR, the low variance explained by the fixed effects in the 
spectral species richness models suggests that other factors play a more 
prominent role at this ecological scale and within these settings. More-
over, we observed that very fine-spatial resolution data, such as data 

Fig. 2. Sample spectra of experimental plots without (a) and with (b) flowering from the 2-cm resolution ortho-mosaic after masking. Bold lines represent the median 
spectra within the 1 m × 1 m core area of each plot (after masking). The shadowed area represents the interval of the pixel values between the 1st and 3rd quartiles 
for each band. (c) Box plot of the reflectance values within the two sample experimental plots selected. 

Table 2 
D statistic values of the Kolmogorov-Smirnov tests evaluating the differences 
between the reflectance values in the two experimental plots shown in Fig. 2. 
Significance codes: *** (p-value <0.001), ** (p-value <0.01), * (p-value <0.05).   

Blue Green Red Red 
Edge 

NIR1 NIR2 

Spatial 
resolution: 
2 cm 

0.12*** 0.43*** 0.43*** 0.28*** 0.37*** 0.39*** 

Spatial 
resolution: 
5 cm 

0.12*** 0.48*** 0.53*** 0.32*** 0.40*** 0.41***  

M. Perrone et al.                                                                                                                                                                                                                                

https://github.com/MichelaPerrone/SVH_Benesov.git
https://github.com/MichelaPerrone/SVH_Benesov.git


Ecological Informatics 81 (2024) 102589

5

Table 3 
Summary of the models’ results. The columns refer to the SD metric used as the response variable; rows refer to the coefficient estimates (coeff. est.) of the fixed-effect 
explanatory variables (log-transformed values) and the models’ marginal and conditional R2 values. Significance codes: *** (p-value <0.001), ** (p-value <0.01), * (p- 
value <0.05).  

Spatial resolution: 2 cm  

sdNDVI RaoQ MPD CHV CVrefl SpSpR 

SR coeff. est. − 4.99e− 3 − 0.02 − 0.02 0.06 − 1.89e− 5 0.02* 
Flowering coeff. est. 0.12*** 0.34*** 0.30*** 0.65*** 0.22*** − 0.02 
R2

m 0.24 0.39 0.37 0.35 0.51 0.05 
R2

c 0.29 0.50 0.48 0.44 0.58 0.13 
Spatial resolution: 5 cm  

sdNDVI RaoQ MPD CHV CVrefl SpSpR 
SR coeff. est. − 5.94e− 3 − 0.02 − 0.02 0.05 4.66e− 3 0.04** 
Flowering coeff. est. 0.15*** 0.34*** 0.32*** 0.78*** 0.21*** 1.46e− 3 

R2
m 0.28 0.37 0.36 0.41 0.38 0.06 

R2
c 0.29 0.49 0.47 0.48 0.50 0.16  

Fig. 3. Coefficient plots of the mixed models illustrating the estimated (log-transformed) values for each explanatory variable, along with their corresponding 50% 
(inner error bars) and 95% (outer error bars) confidence intervals. Colours refer to the individual SD metrics used as the response variable. 

Fig. 4. Predicted relationships between SD (calculated as spectral species richness) and species richness derived from the mixed-effect models for the two spatial 
resolutions tested based on the presence of flowering (see legend). 
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with a 2-cm resolution, are not beneficial when using categorical met-
rics. Indeed, with such a fine spatial resolution, we observed that a high 
number of spectral species are detected in most of the plots, regardless of 
the actual ground species richness (Fig. 4). 

4. Discussion 

4.1. SD metrics and flowering 

The community’s phenological pattern impacts the effective appli-
cation of SD for biodiversity monitoring as plant species exhibit distinct 
physiological and structural characteristics at different phenological 
stages, causing changes in their spectral signatures. The presence of 
blooms (that are markedly different in their spectral characteristics from 
the plant green organs) impacts the use of continuous SD metrics as such 
metrics are highly sensitive to extreme reflectance values. On the con-
trary, our results confirm that by using categorical SD metrics, extreme 
pixel values are less likely to have a disproportionate influence on the 
estimated SD, since they would represent distinct categories alongside 
others of equal importance (Wang and Gamon, 2019). Notably, 
increasing the range of spectral information considered, i.e., from bands 
at specific wavelengths (sdNDVI) to all available spectral bands (RaoQ, 
MPD, CHV, CVrefl), did not substantially improve the performance of 
the continuous metrics, thus indicating that using only a subset of the 
available spectral information is not what limits the successful appli-
cation of SD. To use any of the tested continuous SD metrics, the spectral 
data acquisition timing turned out to be relevant. Indeed, the asyn-
chrony in phenology among species present in the observed community 
presented an additional challenge to the applicability of the SVH for 
estimating biodiversity, as the number of co-present phenological stages 
(both at the leaf- and flower-level) in a plot confounds the observed SD 
(Fassnacht et al., 2022; Thornley et al., 2022). Thus, the timing of data 
acquisition is paramount in identifying possible associations between SD 
and species diversity. For this reason, categorical metrics are highly 
advantageous in this context, as they ideally enable overcoming the 
issue of seasonal change in the optical properties of plant species due to 
their phenology. Indeed, this type of metric could allow the identifica-
tion of spatial units with consistent spectral homogeneity through time 
(Perrone et al., 2023). 

Despite their advantages, the successful use of categorical metrics for 
estimating spectral diversity can be challenged by the necessity of 
selecting appropriate settings by the user, in particular, the optimal 
number of clusters into which the spectral space should be partitioned. 
While it is possible to use virtual dimensionality to get the number of 
clusters in the case of hyperspectral data, the situation is different in the 
case of multispectral data; there, it requires going through a time- 
consuming trial-and-error procedure that should consider the specific 
plant communities observed, the reliability of the results, and the 
computation intensity (Féret and de Boissieu, 2020; Perrone et al., 2023; 
Rocchini et al., 2021b). 

The critical role played by the spatial resolution of the data used 
should be noted as well. Previous studies on SD highlighted how pixel 
size affects the relationship between spectral and plant diversity, which 
becomes considerably weaker with progressively coarser resolutions 
(Gholizadeh et al., 2018, 2019; Wang et al., 2016). However, the 
dependence of the relationship on pixel size is contingent on the SD 
metrics used (Gholizadeh et al., 2018) and sampling plot size, as well as 
on the specifics of the study site (Gholizadeh et al., 2022). Thus, we 
argue that when relying on very fine spatial resolutions that allow 
capturing individual objects, the risk is to introduce noise (e.g., due to 
shadows) into the data (Conti et al., 2021), which could lead to 
exceeding the number of clusters (i.e., of spectral species) identified 
within each area unit (e.g., plot) (Fig. 3). Therefore, users must strike a 
balance between spatial resolution and the desired level of spectral 
discrimination to avoid this issue and obtain meaningful results. 

4.2. Confounding factors 

The complexity of the herbaceous communities’ vertical structure 
can lead to a negative relationship between SD and plant diversity due to 
the “occlusion effect” caused by taller species (Conti et al., 2021). Given 
such previous knowledge, we applied a shadow and bare soil masking on 
the original ortho-mosaics to improve the correlation and focus on the 
specific issues we wanted to test (i.e., the influence of flowering on SD). 
Indeed, as shown by Gholizadeh et al. (2018), filtering out pixels that 
capture information from non-vegetation sources improves the perfor-
mance of SD metrics, allowing a (partial) correction for such con-
founding factors. In principle, such correction is possible when relying 
on data with fine spatial resolution (e.g., proximal or UAV-borne sen-
sors) since the spectral signature of individual pixels is more likely to 
belong to a single object type. Moving to coarser spatial resolutions, such 
as with airborne and spaceborne sensors, spectral unmixing would be 
required to correctly identify mixed pixels and correct for bare soil 
presence, which allows estimating the per-pixel percentage of constit-
uent spectra, or endmembers (Asner and Heidebrecht, 2002; Gholizadeh 
et al., 2018; Rossi and Gholizadeh, 2023). 

In light of the low explanatory power of the models based on spectral 
species richness, additional confounding factors may have played a role 
in the computed SD. As highlighted by Rossi et al. (2021a), the presence 
and ratio of live and dead biomass, together with the total biomass 
(Villoslada et al., 2020), may lead to higher spectral variability. The 
impact varies depending on ecosystem type (Rossi et al., 2021a) and 
specific plant community characteristics, particularly at fine spatial 
resolutions (Villoslada et al., 2020), emphasizing the contextual 
dependence of the spectral-plant diversity relationship (Fassnacht et al., 
2022). Variables such as species composition, life forms (e.g., grami-
noids, forbs, legumes), and their prevalence within the community may 
also affect SD metrics (Gholizadeh et al., 2019; Wang et al., 2018b; Rossi 
et al., 2021a). As an example, Imran et al. (2021) observed a stronger 
SD-plant diversity link in artificial, species-poor ecosystems compared to 
species-rich natural grasslands. Despite being an experimental site, our 
study area has undergone partial re-naturalisation due to the sponta-
neous colonisation by local species, increasing species richness within 
each plot. Such a decrease in the strength of the SD-plant diversity link in 
high species richness habitats further hinders the operational applica-
bility of SD for biodiversity monitoring purposes in natural and 
semi-natural habitats. 

4.3. Limitations 

In the present study, we were interested in assessing if the simple 
presence of flowering has a confounding effect on the relationship be-
tween plant and spectral diversity measured through different metric 
types. Therefore, flowering was included in the analyses as a binary 
(presence/absence) variable. We did not attempt a qualitative or 
quantitative estimation of the flowering presence, as it would have 
diverted from our original aim. While we acknowledge that gathering 
information on the specific flower colour, size, and spatial cover would 
help characterize the presence of flowering within each plot, such in-
formation could not be obtained given the data available (both in terms 
of ground and spectral data). Nevertheless, characterizing and assessing 
the presence of flowering based on specific flower types is a promising 
topic for future research, which could include combining hyperspectral 
data with species-level ground data on flowering plants. This could help 
in acquiring further insight into the confounding effects of flowering on 
SD. 

Moreover, the experimental setup on which our study is based would 
have determined the impossibility of further testing the influence of 
spatial resolution. Indeed, due to the small core plot size (1 m × 1 m) and 
pixel masking to reduce the impact of bare soils and shadowed areas, 
further rescaling (i.e., over a 5-cm spatial resolution) would have 
resulted in few pixels available for SD computation and, thus, would 

M. Perrone et al.                                                                                                                                                                                                                                



Ecological Informatics 81 (2024) 102589

7

have introduced a major source of error (i.e., small sample size). Besides, 
our aim was to assess the direct link between SD and plant diversity, 
which implies the matching between pixel and individual size. Thus, 
coarsening the spatial resolution further would have been in contrast 
with our assumptions. Nevertheless, according to what has been previ-
ously shown by Fassnacht et al. (2022), we suppose that, at resolutions 
coarser than the ones tested here, the smoothing effect on extreme 
values would have resulted in lower SD values. However, we argue that 
(given the sensitivity of continuous SD metrics to extreme values) 
coarsening the spatial resolution would reduce, but not resolve, the 
overestimation of ground plant diversity when using such metrics in the 
presence of flowering. Additional analyses testing the impact of further 
coarsening the pixel size on the ability to map plant diversity of flow-
ering communities using SD could be beneficial; however, given the 
small size of individual plots in our setting, this was not possible to 
perform within the frame of this study. 

Additionally, we did not consider abundance-based indices (e.g., 
Shannon’s H) for both plant and spectral diversity due to the possible 
mismatch between the actual field-sampled species abundance and the 
retained spectral information after pixel masking. However, while spe-
cies richness is the most widespread species diversity metric in SD 
studies, we acknowledge that abundance-based metrics have proven to 
be more strongly related to SD on several occasions (Oldeland et al., 
2010; Torresani et al., 2019; Wang et al., 2018). 

Finally, due to the unavailability of total and relative (live, dead) 
biomass data, as well as data on life forms abundance, we were unable to 
take this type of confounding factors into account in our study. To gain a 
deeper understanding of how all the factors identified so far (i.e., bare 
soil, phenological features, biomass, vertical complexity, community 
composition) and their potential interactions affect the plant-spectral 
diversity relationship, future experiments should be designed to 
consider them simultaneously and assess their impact on different types 
of grasslands. 

5. Conclusions 

The reliability of using SD to monitor plant diversity is a matter of 
controversy and may need more consistency in specific settings, espe-
cially in dynamic ecosystems such as grasslands. In this study, we 
investigated the SD-biodiversity relationship in mesic grassland com-
munities by testing how flowering may influence the estimation of plant 
species richness using different SD metrics. According to our results, the 
presence of flowering proved to impair the ability of continuous SD 
metrics to reflect plant diversity, with flowering likely being the main 
source of spectral variance within plots. On the contrary, categorical SD 
metrics appear less influenced by flowering, confirming the better 
suitability of this type of metrics observed in previous studies (Rossi 
et al., 2021a). Nevertheless, when calculating SD using categorical 
metrics, species richness only explains a small portion of the variability 
in spectral heterogeneity at both spatial resolutions tested. We 
hypothesise that such a low explanatory power should be ascribed to the 
presence of additional confounding factors (e.g., dead biomass, 

community composition) that have previously proven to interfere with 
the estimation of grassland diversity (Gholizadeh et al., 2019; Rossi 
et al., 2021a; Schweiger et al., 2015; Villoslada et al., 2020). Thus, we 
encourage future investigations to systematically consider all possible 
confounding factors when testing the spectral diversity-biodiversity 
relationship in different types of grasslands. Finally, to define the 
actual possibilities and technical constraints of the relationship, future 
research should aim at identifying the optimal trade-off between the 
spatial and spectral resolutions of the remote sensing data used to assess 
plant diversity in grasslands while incorporating the temporal variations 
in the spectral signal. In this framework, comparing spectral signatures 
over an entire growing season (spatio-temporal spectral diversity) could 
be critical in estimating plant diversity. 
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Appendix A

Fig. A1. Sample spectra of experimental plots without (a) and with (b) flowering from the 5-cm resolution ortho-mosaic after masking. Bold lines represent the 
median spectra within the 1 m × 1 m core area of each plot (after masking). The shadowed area represents the interval of the pixel values between the 1st and 3rd 
quartiles for each band. (c) Box plot of the reflectance values within the two sample experimental plots selected 
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