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Abstract

Flow refugia, locations that maintain substrate stability and low hydraulic stress dur-

ing periods of high flow, can ensure riverine resilience in the face of increasing hydro-

logical unpredictability. Despite their known importance, they have been overlooked

in recent years with work on drought refugia currently seeing greater attention.

Moreover, research on the role of flow refugia during artificial flood pulses in regu-

lated rivers, where flood disturbances are no longer part of the hydrograph, is essen-

tially absent. Here, we compared flow refugia for benthic macroinvertebrates among

six habitats (main channel, side channel, riffle, margin, lentic including a floodplain

pond, and inundated floodplain) within four different sites in response to an artificial

flood pulse. We found that the grain-size distribution and macroinvertebrate commu-

nity composition changed at each site following the flood. Macroinvertebrate assem-

blages became longitudinally homogeneous, but within-site beta diversity and taxa

richness remained temporally stable following the flood pulse, suggesting the pres-

ence of flow refugia. In this respect, margin, inundated floodplain and lentic

(a floodplain pond) habitats provided important flow refugia locations, particularly for

the mobile mayfly Rhithrogena sp. In contrast, low substrate stability in riffle and side

channels resulted in limited refugia potential for most taxa. Refuge use was however

patchy with high levels of intra-habitat variability being evident for Rhithrogena

sp. and the amphipod Gammarus fossarum in margin and side channel habitats. Fur-

ther work is required to advance our knowledge of flow refugia in rivers with differ-

ing flow regimes to enable their integration into management and restoration

schemes.
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1 | INTRODUCTION

Hydrological variability is widely acknowledged to play a pivotal role

in the structuring of aquatic ecosystems, including the presence of

natural flood pulses (Karaouzas, Theodoropoulos, Vourka, Gritzalis, &

Skoulikidis, 2019; Palmer & Ruhi, 2019). Increased shear stress, sub-

strate instability and scouring are some of the primary processes asso-

ciated with floods that can lead to negative implications for benthic

organisms (Cobb, Galloway, & Flannagan, 1992; Nakayama &

Asami, 2020; Resh et al., 1988). Despite these sporadic and often
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intense disturbances, macroinvertebrate communities are highly resis-

tant, often returning to pre-flood densities in a few weeks or months

(Angradi, 1997; Matthaei, Uehlinger, & Frutiger, 1997; Robinson,

Uehlinger, & Monaghan, 2003). An important factor that can mitigate

the impact of flood disturbance on benthic assemblages is the use of

refugia which enables recovery times to be shorter than the genera-

tion times of most invertebrate species (Sedell, Reeves, Hauer,

Stanford, & Hawkins, 1990; Van Looy et al., 2019).

Despite the relative importance of refugia in maintaining ecosys-

tem resilience (Sedell et al., 1990; Van Looy et al., 2019), research spe-

cifically examining the role of refugia is heavily skewed towards

drying events or drought (e.g., Dodemaide, Matthews, Iervasi, &

Lester, 2018; Doretto et al., 2018; Hill & Milner, 2018; Sarremejane

et al., 2021; Vander Vorste, Obedzinski, Nossaman Pierce, Carlson, &

Grantham, 2020). Many of the characteristics that define refugia func-

tioning for differing disturbances show some degree of overlap such

as the use of resistance strategies by the organisms (Gjerløv,

Hildrew, & Jones, 2003; Lancaster & Belyea, 1997; Townsend, Dole-

dec, & Scarsbrook, 1997) and the spatio-temporal availability of

refugia, including connectivity to residential habitats (Sarremejane

et al., 2021; Sedell et al., 1990). Importantly however, the physical

characteristics of the disturbance (Effenberger, Sailer, Townsend, &

Matthaei, 2006; Townsend, Scarsbrook, & Dolédec, 1997) dictates

that the role of refugia will differ significantly among disturbance type

and as such the role and the functioning of refugia should be exam-

ined specifically to each disturbance type.

Flow refugia are locations that maintain substrate stability and

low hydraulic stress during periods of high flow, thereby allowing taxa

to resist the disturbance (Fuller, Griego, Muehlbauer, Dennison, &

Doyle, 2010; Lancaster & Hildrew, 1993a). Refugia can be present at

various spatial scales, ranging from individual particles (Biggs, Duncan,

Francoeur, & Meyer, 1997; Matthaei, Arbuckle, & Townsend, 2000;

Townsend, Scarsbrook, et al., 1997) to woody debris and marginal

vegetation (Borchardt, 1993; Palmer, Arensburger, Martin, &

Denman, 1996; Thompson et al., 2018). At the larger scale, inundated

riparian areas, backwaters and the hyporheic zone can act as impor-

tant refugia for a variety of organisms (Dole-Olivier, Marmonier, &

Beffy, 1997; Matthaei & Townsend, 2000; Sueyoshi, Nakano, &

Nakamura, 2014). Of the limited work conducted on the importance

of flow refugia, a large majority of these studies have focussed on nat-

ural flood pulses in relatively natural floodplains (Matthaei &

Townsend, 2000; Sueyoshi et al., 2014) as well as channelised river

reaches (Negishi, Inoue, & Nunokawa, 2002). However, flow regula-

tion remains a significant ongoing threat to freshwater diversity

(Belletti et al., 2020; Reid et al., 2019) and globally artificial floods are

being used to restore flood pulses in flow-regulated rivers (Konrad

et al., 2011; Olden et al., 2014). Although the positive implications of

artificial flood programmes have been documented for ecosystem

health (Melis, Korman, & Kennedy, 2012; Ortlepp & Mürle, 2003;

Robinson, Siebers, & Ortlepp, 2018; Robinson & Uehlinger, 2008), lit-

tle is known about the role of flow refugia in maintaining ecological

persistence during these artificial flow pulses (but see Robinson,

Aebischer, & Uehlinger, 2004).

Anthropogenic activities continue to modify riverine ecosystems

globally, diminishing habitat diversity and the potential availability and

quality of refugia habitats (McCluney et al., 2014; Wohl, 2019). It is

therefore urgent that the role of refugia is better quantified for differ-

ent river types that cover a range of flow regimes, especially as high

flows are being increasingly implemented in river restoration schemes.

Further, this urgency is particularly relevant given that climatic change

is leading to more unpredictable hydrological conditions with both

flood and drought events predicted to increase in frequency and

intensity (Asadieh & Krakauer, 2017; Yuan, Jiao, Yang, & Lei, 2018).

Identifying habitats which could act as flow refugia during flood dis-

turbances is therefore vital to ensure the persistence of freshwater

biodiversity globally. This knowledge would enable freshwater refugia

habitats to be conserved and incorporated in management and

restoration strategies, something that is currently absent (Hermoso,

Ward, & Kennard, 2013; Keppel et al., 2015; Selwood &

Zimmer, 2020). As working on the implications of flood events is

inhibited by the relative unpredictability of flood events and the logis-

tics of working during high flows (Death, 2008), artificial flow pulses

can also provide valuable scientific opportunities for testing ecological

theories (Konrad et al., 2011; Olden et al., 2014).

In this study, we therefore sought to assess how substrate stabil-

ity affected the provision of instream habitats that provide flow

refugia from an artificial flood pulse in the regulated river Spöl,

Switzerland. The objectives were to: (a) assess the role of flow refugia

in maintaining the core taxa present in the Spöl despite potential

reductions in abundances following the artificial flood; (b) assess the

implications of the artificial flood pulse on substrate stability and the

provision of in channel refugia habitats; and (c) assess the effective-

ness of different habitats to act as flow refugia during an artificial

flood pulse.

2 | METHODS

2.1 | Study location

The river Spöl is located in the central Alps, flowing into Switzerland

from Italy in the lower Engadine (Figure 1). The river is regulated by

two hydroelectric dams before entering the Inn River at Zernez,

Switzerland. Flow regulation in the form of residual flow (a minimum

discharge that is set) commences downstream of Livigno reservoir

(Punt dal Gall dam) where the Spöl flows �5.7 km through a canyon-

confined valley in the Swiss National Park and into the lower Ova Spin

reservoir. From this reservoir, the Spöl flows a further 5.5 km to its

confluence with the Inn. For more details regarding the hydropower

setup on the river Spöl please see Scheurer and Molinari (2003).

Prior to regulation in 1970, the river Spöl exhibited a natural

snowmelt / glacial meltwater flow regime, with high flows in summer

and low flows in winter. Periodic floods from heavy rainfall occurred

during summer / early autumn with peak discharges between 20 and

60 m3/s (Robinson et al., 2018). The average annual flow of the Spöl

at the Punt dal Gall fluctuated between 12.5 and 6.6 m3/s, but post-
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completion of the dam the residual flow was set to an average flow of

1 m3/s. In the lower flow regulated section from Ova Spin to Zernez,

the flow is even lower, being permanently set to 1 m3/s in summer

and 0.3 m3/s in winter (Scheurer & Molinari, 2003).

Land use within the 295 km2 catchment (Bundesamt für Umwelt,

2020) is predominately coniferous forest (Picea excelsa and Pinus

mugo) with some grassland and sedges present in the lower floodplain.

Climate in the region is continental with high seasonal variations in

temperature, but low precipitation (Barry, 1992). River sediments orig-

inate primarily from dolomitic and calcareous scree from rocky, high

gradient valley slopes and locally from remnant glacial moraines

(Trachsel, 2001; Trümpy, Schmid, Conti, & Froitzheim, 1997). Bedrock

is present in many areas of the riverbed. In many places, forest vege-

tation has colonised gravel bars, and roots of woody vegetation have

stabilised banks decreasing riparian dynamics often present in natural

free-flowing rivers (Mürle, Ortlepp, & Zahner, 2003).

2.2 | Artificial flood, study sites and habitats

The most notable feature of the flow regime of the regulated Spöl

was the absence of peak flow events. As a result, the Engadine

power company, Swiss National Park and state authorities began to

implement artificial floods, predominately in the upper regulated part

of the Spöl in 2000. Thirteen artificial floods have also been under-

taken in the lower flow regulated section (2000–2017; Kevic,

Ortlepp, Mürle, & Robinson, 2018). In September 2018 (the focus of

this study), a controlled artificial flood was released in the lower flow

regulated section, from the outlet of the Ova Spin reservoir over an

8-hr period. A peak discharge of 25 m3/s was achieved during the

flood that lasted around 2 hrs, with rising and falling limbs being

incremental. Although the event was shorter than natural flood

events, previous artificial floods of similar discharge have been

shown to be sufficient enough to mobilise bed sediments and reduce

algal levels without causing high fish mortality (Mürle et al., 2003;

Ortlepp & Mürle, 2003; Uehlinger, Kawecka, & Robinson, 2003). It

should be noted that there were no implications for water tempera-

ture during the studied flood as the dam is a hypolimnetic release

reservoir, and thus the thermal regime remains relatively constant

(Jakob, Robinson, & Uehlinger, 2003).

The effects of the 2018 artificial flood were monitored at four

locations over a 1.5 km section of the lower river Spöl downstream

of the Ova Spin reservoir with the first site (site 1) located ca. 2.7 km

downstream of the Ova Spin outlet (Figure 1). Two sites (sites 1 and

2) were located upstream of the unregulated Ova da Cluozza tribu-

tary, and two sites (sites 3 and 4) were located downstream of the

confluence. The upstream sites (sites 1 and 2) are located in a

canyon-confined channel, whereas the lower two sites (sites 3 and

4) are in a more open floodplain valley where the channel takes on a

braided form (Figure 1). The four sites represented a gradient of sed-

iment conditions with heterogeneous substrates present at sites

1 and 2 and a more homogenous riverbed at sites 3 and 4 (see

Figure S1 for site photographs). Sampling was conducted before and

after the artificial flood with pre-flood sampling taking place the

week prior to the flood. Substrate samples were conducted immedi-

ately following the artificial flood and again 10-months later to

assess the temporal longevity of flood effects. Macroinvertebrate

sampling was conducted 1 and 7 days after the artificial flood to

assess the utilisation of potential refugial habitats. Sampling method-

ology details can be found below.

At each site, sampling was conducted at the habitat level. A total

of six potential refugial habitats were visually identified as occurring

at one or more sites. These comprised of three in-channel gravel-

bed habitats: (a) the main channel (subjected to high velocities at all

sites, average 0.99 m/s pre-flood, and periodic floods at sites 3 and

4 from the Ova da Cluozza tributary): (b) side channels (reduced

velocities at average 0.41 m/s pre-flood) with the majority

maintaining connectivity with the main channel under residual flow

conditions and: (c) riffle at site 1 only (average velocities pre-flood of

0.70 m/s). Three habitats lacking gravel substrate being comprised

of sand / silt or terrestrial vegetation were also identified: (d) lentic

(comprising an unconnected floodplain pond under residual flow

conditions and 1–2 samples in a pool per time period at site 2);

(e) river margins (taken at the river shoreline and which

encompassed terrestrial vegetation at site 3 during flooding) and; (f )

inundated floodplain (encompassing a channel that formed on the

grassy floodplain following the flood and was connected at either

end to the main channel at site 4). See Table S1 for a summary of all

flow velocities for site-specific habitats before and after the flood

and Table S2 for a breakdown of the sampled habitats on each occa-

sion. As refugial habitats were sampled when present, some habitats

were sampled only at one site (e.g., floodplain and riffle) and some

were sampled on one or two occasions for some sites.

4
3

2 1
Spöl

Ova da Cluozza

Ova Spin Reservoir

Livigno Reservoir

Zernez

0 1 2
km

Switzerland

F IGURE 1 Map of the study sites on the river Spöl in the Swiss
National Park. The artificial flood was released from the Ova Spin
Reservoir in September 2018 [Color figure can be viewed at
wileyonlinelibrary.com]
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2.3 | Sampling methods

2.3.1 | Grain-size distributions

To assess the grain-size distribution (GSD) of surface substrates,

100 to 200-count Wolman samples (dependent on habitat area) were

conducted at each in-channel gravel-bed habitat (n = 3) where pre-

sent at each site. Grains were selected by conducting longitudinal

transects within each habitat, blindly selecting a grain at each step

and measuring the b-axis via a gravelometer (Wolman, 1954). Wolman

counts were conducted before (hereafter termed pre-flood) and after

the artificial flood (hereafter post-flood) to determine how bed condi-

tions changed due to the flood. In addition, habitats were surveyed in

June 2019, approximately 10 months post-flood (hereafter 10 months

post-flood).

2.3.2 | Benthic macroinvertebrates

Benthic macroinvertebrates were sampled at each study site via 30 s

kick samples (n = 3–5 per habitat dependent on habitat area) using a

standard pond net (1 mm mesh size) and preserved in the field in 70%

ethanol. Habitats at each study site were sampled on three occasions;

before the artificial flood, 1 day after the flood and �7 days after the

flood (n = 155 samples; 47 at Site 1, 45 at Site 2, 39 at Site 3 and

24 at Site 4). All benthic invertebrates were identified to the lowest

taxonomic level possible in the laboratory (most to species or genus

with the exception of some Diptera families (Ceratopogonidae, Bleph-

ariceridae, Chironomidae, Simuliidae, Empididae, Stratiomyidae and

some Limoniidae), Oligochaeta, Zonitidae, and Hemiptera (family).

2.4 | Statistical analyses

2.4.1 | Grain-size distributions

Grain size percentiles of D16, D50, D84 and statistical parameters of

mean, sorting, skewness and kurtosis (Bunte & Abt, 2001) were

derived from pooled site data to characterise benthic substrate com-

position over time. Sorting coefficients were calculated based on Folk

and Wards (1957) sorting classification. Cumulative GSD curves were

constructed for Wolman counts based on pooled habitat data.

2.4.2 | Benthic macroinvertebrates

Differences in community composition between pre-flood, 1 day

post-flood and 7 days post-flood were examined via Principal Coordi-

nates Analysis (PCoA) centroid plots. Two centroid matrices were

derived from Bray–Curtis similarity coefficients by calculating the

averages of all samples per time period; one by site and one by each

habitat (regardless of site). Statistical differences in community com-

position associated with the additive explanatory factors of site, time,

habitat, and the interaction of habitat � time and site � time were

assessed via PERMANOVA using the ‘adonis’ function in the vegan

package using all samples (Oksanen et al., 2019). Where significant

differences occurred by time, pairwise comparisons of differences

were performed using the ‘pairwise.adonis’ function (Arbizu, 2019). To

assess if beta diversity of Spöl assemblages varied over time (i.e., all

sites combined) and over time by site, homogeneity of multivariate

dispersions among assemblages were examined using the ‘betadisper’
function and tested for statistical differences via Tukey post hoc tests.

Taxa driving differences in community composition associated

with the artificial flood were examined via the Similarity Percentage

(SIMPER) using the ‘simper’ function. Subsequently, the abundance of

the top four taxa identified through SIMPER in addition to total abun-

dance and taxa richness were statistically tested via linear mixed-

effects models (LMMs) using the ‘lmer’ function in the lme4 package

(Bates, Mächler, Bolker, & Walker, 2015). All metrics were log(x + 1)

transformed. Here, taxa richness was assessed as proxy for refugia

provision following Van Looy et al. (2019). Should refugia be present,

taxa richness should demonstrate a non-significant effect associated

with time. All models were fitted with the fixed effects of time (pre-

flood, 1 day post-flood and 7 days post-flood), habitat and their

interaction. Site was fitted as a random effect to account for potential

spatial and temporal autocorrelation. Post-hoc pairwise comparisons

of groups were performed where a significant effect of time was ret-

urned using estimated marginal means within the ‘emmeans’ package
(Lenth et al., 2020). All analyses were conducted in the R environment

(R v3.6.0; R Development Core Team, 2019).

2.5 | Results

2.5.1 | Grain-size distributions

The GSD of benthic substrates changed following the flood pulse,

being habitat and site dependent. At the site level, changes in the

GSD were most evident at sites 1 and 2, with gravels becoming

coarser immediately following the artificial flood, indicating the loss of

fine sediment surficial deposits (Table 1). At sites 3 and 4, changes in

GSD were not as substantial but still present, with some increases in

the fine – medium pebble fractions (4–16 mm) at both sites, resulting

in a finer distribution (Table 1). Ten months post-flood, sites 1 and

2 displayed little change in post-flood GSD conditions. In contrast,

GSD at sites 3 and 4 demonstrated a considerable shift to coarser

substrate conditions 10 months post-flood (Table 1). Sorting coeffi-

cients were generally similar across time, with grains being classified

as moderately well sorted (Folk and Ward coefficients of 0.5–1.0).

However, at site 2 in both post-flood periods and at site 1 10 months

later, fractions were classified as being well sorted (coefficients in the

range 0.35–0.50). Kurtosis values did not vary over time (Table 1).

At the habitat level, there were no differences in GSD profiles

over time at the main channel habitats (Figure 2a). In contrast, consid-

erable changes in the GSD were evident at side channel and riffle hab-

itats with coarsening evident following the flood (Figure 2b,c). Riffle
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habitats displayed fining 10 months later with an increase in the frac-

tion <30 mm, whilst no further change was present in the side channel

habitats.

2.5.2 | Benthic macroinvertebrates

A total of 18,672 individuals comprising 38 taxa (and 3 semi-aquatic

taxa) were recorded in the 155 benthic samples. The most abundant

taxa overall were Gammarus fossarum (47.8% of total benthic abun-

dance) followed by Baetis sp. (21.7%), Chironomidae (12.0%) and

Rhithrogena sp. (5.4%). Three predominately lentic taxa, most likely

originating from the reservoir, were found only post-flood

(Ptychoptera, Stratiomyidae, Ceratopogonidae, totalling 9 individuals).

PCoA centroid site plots indicated a shift in community composi-

tion following the artificial flood at all sites (Figure 3a). Pre-flood com-

munity composition between sites was heterogeneous with sites

plotting discretely in ordination space. In contrast, post-flood commu-

nities from all sites clustered towards the centre of the ordination

space with the composition of each site converging indicating a more

homogenous assemblage across all sites. Beta diversity of Spöl assem-

blages reflected this with a significant reduction in community hetero-

geneity following the artificial flood in both 1 day and 7 day post-

flood assemblages relative to pre-flood assemblages (p = .04 and

p = .05, respectively).

PERMANOVA indicated that community composition differed as

a function of sample time, site and habitat in addition to the interac-

tion of site � time and habitat � time (all factors p < .002), with habi-

tat accounting for the greatest amount of variation (R2 of 17%).

Pairwise PERMANOVA indicated that community composition of pre-

flood communities differed relative to 1 and 7 day post-flood commu-

nities (F = 4.01, R2 = 0.04, p = .014 and F = 9.34, R2 = 0.09,

p = .001, respectively), but there were no differences between 1 day

and 7 day post-flood communities (p > .05). SIMPER indicated that

reductions in G. fossarum, Baetis sp., Chironomidae, Rhithrogena

sp. and Protonemura sp. were the primary driver of differences

between pre- and post- flood assemblages (Table S3). Despite alter-

ations to Spöl assemblages following the flood, beta diversity

TABLE 1 Summary of grain size metrics for the study period based on Wolman pebble count. Post-flood is immediately after the artificial
flood

Site 1 Site 2 Site 3 Site 4

Metric
Pre-
flood

Post-
flood

10 months
post-flood

Pre-
flood

Post-
flood

10 months
post-flood

Pre-
flood

Post-
flood

10 months
post-flood

Pre-
flood

Post-
flood

10 months
post-flood

D16 (mm) 7.8 11.1 8.9 10.1 9.2 9.5 9.9 6.5 10.9 9.6 6.9 16.2

D50 (mm) 21.2 30.5 24.0 26.9 43.8 36.0 21.0 18.5 25.2 23.7 18.5 33.2

D84 (mm) 50.9 81.3 121.9 65.0 144.3 111.0 39.0 47.0 67.0 43.7 39.0 58.0

Mean

(mm)

23.9 38.3 38.7 30.8 57.5 44.8 22.2 21.8 31.8 25.0 20.5 35.0

Sorting 0.55 0.53 0.40 0.54 0.37 0.45 0.65 0.52 0.54 0.58 0.57 0.62

Skewness 0.91 1.08 1.24 0.91 0.72 0.88 0.93 0.93 1.11 0.83 0.90 0.89

Kurtosis 0.18 0.20 0.16 0.22 0.25 0.17 0.24 0.22 0.21 0.27 0.26 0.31
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F IGURE 2 Grain-size distribution (GSD) profiles of benthic substrates as determined by Wolman counts at the three in-channel habitats
(a) main channel, (b) side channel and (c) riffle. Post-flood is immediately after the artificial flood
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remained stable at the individual sites over time (p > .05), with the

exception of site 1 which saw a significant increase in heterogeneity

following the artificial flood (p = .026).

PCoA habitat centroid plots indicated a shift in community com-

position associated with habitat type. Pre-flood margin and side chan-

nel communities were most similar, with riffle communities also

occupying a similar ordination space. In contrast, main channel and

lentic habitats supported discrete communities (Figure 3b). Following

the flood, riffle and side channel communities became more compara-

ble to main channel communities, whilst margin communities demon-

strated a shift in composition similar to lentic assemblages and still

supported discrete communities post-flood (Figure 3b). Floodplain

communities represented a ‘bridge’ between the two clusters of

instream and margin / lentic habitats (Figure 3b).

Benthic total abundance, and the abundance of Baetis sp. and

Chironomidae demonstrated a statistically significant negative effect

of sample time (Table 2). Taxa richness and abundances of G. fossarum

and Rhithrogena sp. did not differ by time (Table 2). Total abundance

reduced immediately following the flood in all habitats with the

exception of main channel communities that remained stable 1 day

after the flood (Figure 4a; Table S4). Taxa richness demonstrated

highly patchy and variable responses to the artificial flood (see

Figure 4b), although only the lentic habitat exhibited a significant

increase 1-day after the flood. Taxa richness in some habitats did not

change following the flood (e.g., main channel), displayed a reduction

for some habitats (e.g., riffle and side channel), or increased immedi-

ately post-flood then displayed reductions 7 days post-flood

(e.g., lentic, margin; Figure 4b).

G. fossarum were highly abundant (>100 individuals per 30 s

sample) at marginal and side channel habitats pre-flood, but were

markedly reduced in side channels immediately following the flood

(Figure 4c). Use of habitats by G. fossarum 1-day following the

flood was highly variable with marginal habitats supporting abun-

dances of �1,250 individuals (per 30 s kick) in one instance.

Rhithrogena sp. abundances in margin and side channel habitats

showed significant increases 1 day post-flood with the floodplain

also supporting comparable numbers (Figure 4d; Table S4). Post-

flood abundances remained stable in side and margin habitats but

F IGURE 3 Principal Coordinates Analysis (PCoA) centroid (a) site, and (b) habitat plots using Bray–Curtis similarity coefficients of benthic
communities from the river Spöl associated with an artificial flood in September 2018. In plot labels for a = sites (1–4) and for b = time period
(Pre = pre-flood, 1 day post = 1 day post-flood and, 7 days post = 7 days post-flood). Note inundated floodplains were only sampled after the
flood [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Summary of LMMs testing
the influence of sample time (pre-flood,
1 day post-flood and 7 days post-flood),
habitat and their interaction on total
abundance, taxa richness and abundance
of individual taxa

Factor

Time Habitat Time � habitat

χ2 p χ2 p χ2 p

Total abundance 9.71 .008 33.72 <.001 5.78 .762

Taxa richness 0.01 .996 14.16 .015 12.20 .202

Gammarus fossarum 2.96 .228 45.74 <.001 8.22 .512

Baetis sp. 33.84 <.001 70.36 <.001 14.88 .094

Chironomidae 28.55 <.001 210.54 <.001 31.19 <.001

Rhithrogena sp. 5.32 .069 38.24 <.001 15.03 .090

Note: Significant terms are emboldened.
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continued to expand in floodplain habitats 7 days post-flood. The

main channel displayed a marginally insignificant reduction in

Rhithrogena sp. following the flood (Figure 4d). As with G. fossarum,

highly variable habitat use following the flood was evident for

Rhithrogena sp. with considerable positive outliers evident in side

channel and margin habitats both 1 and 7 days following the flood

pulse (Figure 4d). Baetis sp. abundances were significantly reduced

in riffle, side channel and margin habitats and Chironomidae abun-

dances in lentic and riffle habitats following the flood (Figure S2a,

b; Table S4).

3 | DISCUSSION

We examined how benthic macroinvertebrates responded to an artifi-

cial flood associated with the provision of differential habitats acting

as flow refugia. Prior to the artificial flood pulse, benthic

macroinvertebrate communities at each site represented discrete

communities, most likely reflecting the habitat heterogeneity present

at the different sites. However, following the flood pulse, communi-

ties became more homogenous with little variation between sites

being present both 1 and 7 days post-flood. Despite the
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F IGURE 4 Boxplot of (a) total abundance; (b) taxa richness; (c) Gammarus fossarum abundance, and (d) Rhithrogena sp. abundance of benthic
macroinvertebrate communities as a function of habitat and sample time (pre-flood, 1 day post-flood and 7 days post-flood). Note inundated
floodplains were only sampled after the flood [Color figure can be viewed at wileyonlinelibrary.com]
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homogenisation of Spöl assemblages associated with the flood,

within-site beta diversity remained temporally stable in all but one

instance. The stable temporal beta diversity at the site level suggests

that refugia provision was present in the Spöl with taxa being able to

persist through the flood, but that the more tolerant generalists domi-

nated. The exception to this was at site 1 that supported the highest

taxa richness pre-flood, and which comprised a core set of taxa but

also some rarer species. It is likely that the flood eradicated some of

these rarer taxa with some remaining in a few samples, thereby caus-

ing the observed increase in community heterogeneity post-flood.

The provision of refugia also can be assumed through the lack of sig-

nificant differences in overall Spöl taxa richness pre- and post-flood.

Taxa richness can provide a good proxy to assess the presence of

refugia during periods of disturbance (following Sueyoshi et al., 2014;

Van Looy et al., 2019). Given the stability in this metric, we can

assume that refugia were present in the Spöl and therefore that

refugia provision was essential in enabling the resistance of benthic

taxa to the artificial flood (also see Robinson, Aebischer, et al., 2004).

Following the flood, lateral margin areas and the inundated flood-

plain displayed increased abundances and the lentic habitat (compris-

ing a previously disconnected floodplain pond) displayed increased

taxa richness, suggesting either active flow refuge seeking behaviour

to avoid unfavourable conditions in the river channel, or passive

draft/transport during the flood followed by persistence in the

refugial habitats. Robinson, Aebischer et al. (2004) and Matthaei and

Townsend (2000) also recorded high invertebrate drift within inun-

dated riparian areas following floods and shoreline / marginal areas

have been similarly cited as refugial areas (Rempel, Richardson, &

Healey, 1999). Margin habitats exhibited a shift in composition to one

similar to lentic habitats in our study, reflecting the refugial role both

these habitats played for taxa preferring slow-flowing waters.

Sueyoshi et al. (2014) similarly found that habitats with slow-flowing

water acted as refugia during a snowmelt flood. In contrast, the

instream habitats of riffle, side and main channel habitats became

more homogenous in their community composition post-flood.

Reductions in abundance and taxa richness were also evident in the

riffle and side channel habitats, most likely reflecting a considerable

loss of taxa. Inundated floodplain communities represented a ‘bridge’
between the two clusters of instream (riffle, side and main) and margin

/ lentic habitats, suggesting some degree of intermediate habitat con-

ditions. The active use of riparian and floodplain habitats as refugia

highlights the importance of river systems being able to maintain lat-

eral connectivity during hydrological flood disturbances (Chanut,

Datry, Gabbud, & Robinson, 2019; Matthaei & Townsend, 2000;

Ward, 1989). Globally, many river channels are increasingly being

channelised, resulting in flood peaks being funnelled within the chan-

nel with little connection with lateral riparian / floodplain areas that

naturally would occur. This lack of lateral connectivity in highly modi-

fied river channels limits habitat provision and in turn the likelihood of

taxa finding suitable refugia (Negishi et al., 2002; Sueyoshi

et al., 2014; Williams et al., 2020). Our results provide further evi-

dence that lateral connectivity is essential to maintain biodiversity fol-

lowing hydrological disturbances.

Flow refugia use was particularly evident for the mayfly

Rhithrogena sp. with occupation in the floodplain habitat, and

increased abundances in margin and side channel habitats following

the flood. This result was mirrored by a reduction in abundances in

their dominant habitat of the main channel prior to the flood. Refugia

use has been found to be highly species dependent (Lancaster &

Hildrew, 1993b; Sueyoshi et al., 2014), however Rempel et al. (1999)

also cited Rhithrogena sp. as showing active refugia behaviour follow-

ing a large flood. This taxon is highly mobile, being observed as early

recolonists following instream disturbances (Matthaei, Uehlinger,

Meyer, & Frutiger, 1996) and therefore can seek refugia when hydrau-

lic stress increases during flood events.

Mobility in accessing refugia is also crucial to ensure that taxa

are not stranded in temporary habitats formed during a flood,

such as inundated floodplains or marginal areas (Matthaei &

Townsend, 2000). In the case of the studied flood pulse, morphologi-

cal change in the channel form dictated that marginal and inundated

floodplain habitats were still present 7 days after the flood. Therefore,

it can be expected that taxa would have been able to make it back to

their residential habitats with low risk of stranding following the flood.

In contrast to Rhithrogena sp., the mayfly Baetis sp. and the dipteran

Chironomidae displayed significant reductions in abundance following

the flood. Bruno, Cashman, Maiolini, Biffi, and Zolezzi (2016) found

that these two taxa were particularly sensitive to dislodgement from

high flows, demonstrating the highest drift rates during hydropeaking

flood pulses. Although both taxa are particularly affected during artifi-

cial flood pulses, they have been recorded to exhibit rapid recovery to

pre-disturbance abundances (Robinson et al., 2003; Robinson,

Uehlinger, & Monaghan, 2004).

Use of refugia is often highly patchy in space, reflecting the

microdistribution of hydraulic stress and substrate stability amongst

other factors (Dole-Olivier et al., 1997; Lancaster & Belyea, 1997;

Palmer et al., 1996). This patchiness was evident in the Spöl with

G. fossarum and Rhithrogena sp. demonstrating considerable abun-

dances in individual samples that were an order of magnitude greater

than in other samples. For example, abundances of 1,232 individuals

were recorded in one 1-day post-flood margin sample for G. fossarum

(maximum pre-flood abundance of 666 in side channel habitat), whilst

a large number of outliers were evident in both 1 and 7 day post-flood

samples within the margin and side channel habitats for Rhithrogena

sp. This patchiness highlights the need for high habitat diversity under

baseflow conditions, which in turn dictates a high likelihood of habitat

diversity under hydrological stress, with a small proportion of these

habitat patches representing suitable refugia for different taxa. The

patchy nature of refugia use also highlights the difficulties in assessing

refugia potential, particularly associated with the unpredictable nature

of floods (Death, 2008). Artificial floods in this sense represent a

unique scientific opportunity to further our knowledge base of flow

refugia (Konrad et al., 2011; Olden et al., 2014).

The importance of refugia habitats in the Spöl can be placed in

the context of changing sedimentological conditions. High hydraulic

stress during flood events can lead to significant displacement of ben-

thic macroinvertebrates, whilst stable riverbed patches can act as flow
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refugia (Effenberger et al., 2006; Lancaster & Hildrew, 1993a). We

observed that all sites underwent changes in their GSD, which may

partially explain the altered composition of macroinvertebrate com-

munities following the flood. In particular, riffle and side channel habi-

tats underwent considerable coarsening with the artificial flood

mobilising fine sediments. Other studies examining the role of artificial

floods in the river Spöl under earlier flood settings also observed a

coarsening of riverbed sediments, with active transport of bed mate-

rial and the deposition of loose gravel (Mürle et al., 2003). We

observed similar in this study. The high degree of sediment transport

most likely explains why these habitats displayed the greatest changes

in macroinvertebrate communities following the flood in terms of

composition, abundance and richness, with large-scale drift often

being initiated via dislodgement due to saltating grains or enhanced

shear stresses (Gibbins, Batalla, & Vericat, 2010; Gibbins, Vericat, &

Batalla, 2007). In marked contrast to the side and riffle habitats, the

main channel, although also being subjected to the highest hydraulic

pressures of the flood pulse, displayed no changes in the GSD. This

habitat was subjected to high energy velocities prior to the flood pulse

and it can be expected that the artificial flood would not change the

structure of the riverbed. Here, taxa richness and abundances were

low prior to the flood but remained temporally stable as did commu-

nity composition to some degree. Understanding substrate stability is

therefore vital to be able to assess the relative importance of refugia

for maintaining resilience.

Our knowledge of flow refugia remains severely limited compared

to that of drought / low flow refugia. Our results provide additional

knowledge to this neglected resilience concept in the context of an

artificial flood pulse. We found that although macroinvertebrate

assemblages became homogenised longitudinally at the four river

locations monitored, the diversity of invertebrate communities at the

site scale remained similar to pre-flood levels and taxa richness

remained stable over time. Overall, these results indicated that

although generalist taxa dominated the community following the

flood, sufficient refugia must have been present to enable the persis-

tence of more flow-sensitive taxa that contribute to diversity. Riparian

margin areas, inundated floodplains and lentic habitats (a floodplain

pond) acted as important refugia areas. Low substrate stability in riffle

and side channels resulted in limited refugia potential. However, our

results also highlight that refugia use is patchy in space, with signifi-

cant intra-habitat variability being evident. We believe this study and

the recognition of refugia as a means of river resilience by Van Looy

et al. (2019) should stimulate further research on flow refugia func-

tioning, which although prominent in the late 1990's has since been

essentially neglected. Ensuring refugia functioning under increasingly

unpredictable hydrological extremes by incorporation into restoration

and management schemes is vital to ensure the persistence of fresh-

water biodiversity and management (Selwood & Zimmer, 2020).
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