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Abstract
Over the last two decades, considerable research has built on remote sensing of spectral diversity to
assess plant diversity. The spectral variation hypothesis (SVH) proposes that spatial variation in
reflectance data of an area is positively associated with plant diversity. While the SVH has exhibited
validity in dense forests, it performs poorly in highly fragmented and temporally dynamic
agricultural landscapes covered mainly by grasslands. Such underperformance can be attributed to
the mosaic-like spatial structure of human-dominated landscapes with fields in varying
phenological and management stages. Therefore, we argued for re-evaluating SVH’s flawed
window-based spatial analysis and underutilized temporal component. In particular, we captured
the spatial and temporal variation in reflectance and assessed the relationships between spatial and
temporal components of spectral diversity and plant diversity at the parcel level as a unit that
relates to management patterns. Our investigation spanned three grasslands on two continents
covering a wide spectrum of agricultural usage intensities. To calculate different components of
spectral diversity, we used multi-temporal spaceborne Sentinel-2 data. We showed that plant
diversity was negatively associated with the temporal component of spectral diversity across all
sites. In contrast, the spatial component of spectral diversity was related to plant diversity in sites
with larger parcels. Our findings highlighted that in agricultural landscapes, the temporal
component of spectral diversity drives the spectral diversity-plant diversity associations.
Consequently, our results offer a novel perspective for remote sensing of plant diversity globally.

1. Introduction

The expansion and intensification of agriculture to
meet society’s demand for soft commodities has
emerged as a significant driver of biodiversity loss
worldwide (Díaz et al 2019). Nearly half of the
world’s inhabitable terrestrial surface is under agri-
cultural use and about 69% of the world’s agri-
cultural area is covered by grasslands for livestock
production (O’Mara 2012, Ritchie and Roser 2020).
Halting biodiversity losses in agricultural landscapes

will therefore strongly depend on our ability to trans-
form consumption and production systems to reduce
our impacts on biodiversity (Leclère et al 2020).
Achieving this goal would require monitoring biod-
iversity across large scales.

Ongoing advances in satellite remote sensing
capabilities have spurred efforts to estimate biod-
iversity patterns across broad spatial scales. In partic-
ular, the analysis of spectral variation to infer plant
diversity—known as the spectral variation hypothesis
(SVH)—has gained traction as an intuitive approach.
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Figure 1. (a) Sentinel-2 true-color image (12 July 2021) of an agricultural landscape with mowed grassland parcels the Val Müstair,
Switzerland. Spectral diversity is calculated as the spectral variance from three vegetation indices derived from the Sentinel-2
image within (b) 3× 3 pixels mowing windows, (c) 50 m× 50 m windows, and (d) individual parcels. High spectral diversity
values are visible for the two window-based approaches (b) and (c), particularly at the field edges of the parcels or near roads.

The SVH relates the spectral heterogeneity or vari-
ability of an image captured by an optical sensor
to environmental heterogeneity, which can act as a
proxy for species diversity (Palmer et al 2000, 2002).
Simply put, regions with high spectral diversity are
presumed to support a larger pool of species. Previous
studies, particularly those utilizing fine spatial resolu-
tion data, have revealed a direct link between spectral
diversity and plant diversity, presumably due to vari-
ous biochemical, physiological, structural, and phen-
ological characteristics of individual plant species that
are detectable through remote sensing (Schweiger
et al 2018, Frye et al 2021, Kothari and Schweiger
2022).

Although substantial progress has been made in
assessing plant diversity using spaceborne remote
sensing over the last two decades (Rocchini et al 2004,
Khare et al 2019, Torresani et al 2019, Badourdine et al
2022, Gholizadeh et al 2022, Rossi and Gholizadeh
2023), there are still several unresolved challenges
to developing an operational approach to map plant
diversity (Hauser et al 2021). Of note is the weak
performance of the SVH across highly-fragmented
agricultural landscapes (Schmidtlein and Fassnacht
2017, Fassnacht et al 2022, Perrone et al 2023). Such
poor performance is primarily due to the distinctive
mosaic-like spatial structure of these landscapes char-
acterized by complex arrangements of features, such
as field edges, roads, and fields in varying phenolo-
gical and management stages, all of which contribute
to a significant increase in spectral diversity values not
related to plant diversity (Garrigues et al 2006).

To address the weak SVH performance in agri-
cultural landscapes, we propose quantifying spec-
tral diversity within parcels, as opposed to fixed and
regularly shaped boundaries (or windows; Laliberté
et al 2020, Rocchini et al 2021), congruent with
the mosaic-like and dynamic nature of these land-
scapes. We argue that a more suitable approach to
quantify plant diversity in agricultural landscapes
should be achieved by moving beyond a window-
based approach to a parcel level one, where plant

diversity is characterized for each parcel and not
processing windows of arbitrary size (figure 1). In
doing so, we not only eliminate edge effects but also
avoid grouping different parcels at varying phenolo-
gical and management stages with highly divergent
reflectance characteristics into the same category.
Ultimately, since parcels are core elements of agri-
cultural landscapes, quantifying plant diversity at the
parcel level and mirroring the delineations of owner-
ship and management become essential for optimiz-
ing biodiversity-friendly management decisions.

From a temporal perspective, spectral diversity is
often calculated at a single point in time and there-
fore offering only a snapshot of a dynamic envir-
onment (Thornley et al 2022) despite significant
shifts in spectral responses over the growing sea-
son (Yang et al 2016, Chavana-Bryant et al 2017,
Wu et al 2017). Furthermore, within an agricultural
landscape, anthropogenic stressors such as burning,
grazing, mowing, fertilizing, and harvesting signi-
ficantly alter the spectral signature and hence spec-
tral diversity over time within a growing season
(Gholizadeh et al 2020). As a result, we argue that cap-
turing spectral variations in time, in conjunctionwith
spatial variations, becomes crucial within agricultural
landscapes (Rossi et al 2021).

In this work, we assessed the association between
spectral diversity and plant diversity at parcel level
by decomposing the variability in spectral diversity
into spatial, temporal, and spatio-temporal compon-
ents, following the framework presented by Rossi et al
(2021). In doing so, we capture the spectral variance
over space and time and their interaction. We sug-
gest that reconfiguring spectral diversity computa-
tion to a parcel level would substantially improve its
utility for accurately estimating plant diversity across
agricultural landscapes. Furthermore, we hypothes-
ize that the temporal component of spectral diversity
is closely related to the degree of land use intens-
ity, such as mowing and grazing occurrences and
intensities. Therefore, we anticipate high temporal
spectral diversity to be associated with fewer species,
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given the strong associations of land use intensity
and related human disturbances with biodiversity
(Klein et al 2020). To test our hypotheses, we defined
two objectives: (1) calculate the spatial, temporal,
and spatio-temporal components of spectral diversity
within parcels with different management types and
(2) assess whether the spatial and temporal spec-
tral diversity of a parcel is associated with plant
diversity. To achieve our first objective, we used
large-scale management data available for grasslands
in Switzerland and Sentinel-2 remote sensing data
(spatial resolution of 10 m, 13 bands, Drusch et al
2012). To accomplish our second objective, we used
Sentinel-2 data in combination with in situ species
inventories from three grasslands utilized for agricul-
tural production, two in Europe and one in theUnited
States (U.S.). Our parcel-based remote sensing exper-
iment is a necessary first step for assessing the capabil-
ity of spectral diversity to detect plant diversity across
agricultural landscapes.

2. Methods

2.1. In situ species inventories and parcels
Our study was conducted in three temperate grass-
lands in Switzerland, U.S., and the Netherlands.
Our study sites spanned a wide spectrum of agri-
cultural usage intensities, ranging from protected
grassland grazed only by wild ungulates to artifi-
cial intensely used grasslands (table 1). For each
study site, vector information on parcels was available
(Switzerland and U.S.) or derived through image seg-
mentation (Netherlands). To mitigate edge effects in
the spectral diversity calculations, we negatively buf-
fered all parcels (function Buffer ArcGIS Pro v3.1.2,
Environmental Systems Research Institute, Redlands,
California). We customized the buffer sizes based on
the specific landscape characteristics of each study
site, accounting for parcel size and the size of sur-
rounding features such as dirt roads.

2.1.1. Switzerland
Our Swiss study site was located in southeastern
Switzerland in the Canton of Grisons and encom-
passed approximately 800 km2 and included the Swiss
National Park (SNP), the Lower Engadine, and the
Val Müstair (46◦34′ to 46◦54′N, 9◦58′ to 10◦25′E).
The area is characterized by a dry inner-alpine cli-
mate with mean annual temperatures of 6 ◦C at the
valley floor (1300 m asl), and mean annual precip-
itation of around 800 mm (MeteoSwiss 2018). The
SNP is a category Ia nature reserve (highest protection
level—strict nature reserve). Correspondingly, no
agricultural management takes place within the park
boundaries and grasslands are grazed by large popu-
lations of red deer, chamois, and ibex. Grasslands in
the Lower Engadine and the Val Müstair are subject

to organic as well as traditional agricultural man-
agement, including fertilization, mowing, and graz-
ing (Rossi et al 2020). Some grasslands are addi-
tionally irrigated. In total, we considered a data-
set of 3574 parcels (https://geodienste.ch/services/
lwb\_nutzungsflaechen combined with parcels on
subalpine meadows in the SNP), each with an area
of at least 600 m2 and an average size of 4472 m2

after masking out forests (ESA WorldCover 10 m
2021 V200 product; Zanaga et al 2022) and negative
buffering of 10 m. Each of these parcels was associ-
ated with one of seven distinct management types:
(1) artificial meadows (6–10 species, n = 301), (2)
permanent meadows (15–30 species, n = 1638), (3)
low-intensity meadows (30–40 species, n = 369), (4)
extensively used meadows (40–70 species, n= 1007),
(5) pastures (n = 35), (6) extensively used pastures
(n = 201), and (7) protected grasslands (n = 23).
We derived indicative species counts for meadows
from Bosshard (2016). In addition, to the manage-
ment type information, we collected species inventor-
ies from 35 parcels distributed homogeneously across
the Val Müstair. Specifically, we documented species
compositionwithin a 60m2 (6m× 10m) plot in each
parcel in June 2021. Due to logistical constraints, we
collected species data only in meadows (i.e. manage-
ment types 1–4).

2.1.2. United States
Our U.S. study took place in the Nature
Conservancy’s Tallgrass Prairie Preserve (TGPP;
36◦50′ N, 96◦25′ W) in Oklahoma. The area under
investigation consisted of a contiguous tallgrass
prairie of ∼50 km2 managed through the synergistic
application of prescribed fire and cattle grazing.Mean
annual air temperature is around 32 ◦C (summer)
and 3 ◦C (winter) with mean annual precipitation
around 960 mm (Sherrill et al 2022). The northern
portion of the TGPP was subdivided into eight dis-
tinct pastures, each with three parcels, from which
one is burned each year with prescribed fire to main-
tain a three-year fire-return interval (Fuhlendorf and
Engle 2004). Parcels had an average size of 792 109m2

after masking out roads and forests and negative buf-
fering of 50 m using parcel vector files provided
by the Nature Conservancy. Pastures were moder-
ately grazed (0.37 animal units ha−1) from April to
September.We collected species inventories every July
for three years (2019–2021) in each of the 24 parcels.
We removed parcels burned in the year of the survey
from our analysis due to extended periods of elevated
soil exposure (>50%), resulting in 48 parcel-based
species counts over three years. The data collection in
each parcel encompassed seven randomly positioned
transect arrays, each consisting of two intersecting
60 m transects. For each intersecting set of 60 m tran-
sects, species composition was documented for 25
0.1 m2 equidistant plots. For a detailed description of
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Table 1. Overview of in situ and remote sensing data per study site.

Spectral diversity-
management type Spectral diversity-plant diversity

Switzerland Switzerland United States Netherlands

Number of
Sentinel-2
images

7 13 21 (7× 3) 7

Acquisition
time

April to
October, 2021

April to October,
2021

April to October,
2019–2021

April to October, 2020

Number of
parcels

3574 35 48 20

Average
parcel size
(m2)

4472 7042 792 109 11 600

Parcel buffer
(m)

10 10 50 10

In situ
species
inventories

Management
type

1× 60 m2/parcel 175× 0.1m2/parcel 3× 1 m2/parcel

Management Grazing, mowing,
fertilizing, protecting

Grazing, mowing,
fertilizing

Grazing, burning Grazing,
mowing, fertilizing

the species inventory sampling protocol, we refer to
McMillan et al (2022).

2.1.3. Netherlands
The study area in the Netherlands covers three lar-
ger polders; the Boterhuispolder, Lakerpolder, and
Vrouwe Vennepolder located northeast of Leiden,
Zuid-Holland (52◦11′ N, 4◦33′ E). Mean annual
air temperature is around 11 ◦C with an average
annual precipitation of around 900 mm. The area
consisted ofmeadows of peat grasslands that areman-
aged for dairy farming. Within the area, both highly
productive grasslands subject to intensive manage-
ment regimes, as well as areas where management
has transitioned to extensive practices, such as raised
water levels, reduced mowing, grazing, and fertiliz-
ation, existed. In September 2020, a baseline field
campaign was conducted across 20 parcels covering
345 000m2 in total and averaging 11 600m2 after neg-
ative buffering of 10 m per parcel. Species inventories
were collected in three 1m× 1mplots placed diagon-
ally in transects 25 m apart within each parcel. Parcel
data was acquired through unsupervised segment-
ation based on the pre-trained Segment Anything
Model developed by Meta AI (Kirillov et al 2023)
and implemented in ArcGIS Pro v3.1.2. Segments
were delineated within the field edges, excluding
ditches, waterways and banks, and included predom-
inantly the vegetated grass surfaces only. We verified
correspondence of the results with public govern-
mental data on national agricultural land use in the
Netherlands, the Agrarisch Areaal Nederland dataset
(www.pdok.nl/-/dataset-agrarisch-areaal-nederland-
is-referentiepercelen-geworden).

2.2. Plant diversity
In each study site, we used species richness to express
the plant diversity of our parcels. Species richness
reports the number of observed species within each
sampling area regardless of their abundance and
therefore places the same weight on rare and domin-
ant species, providing a comparable and simple met-
ric across different studies. The species richness per
parcel corresponded to the total count of observed
species within all the plots in the given parcel.

2.3. Remote sensing data
We used open-access Copernicus Sentinel-2 data
to quantify the different components of spectral
diversity on the parcel level. Pre-processing and
downloading of Sentinel-2 Level-2 A images were
performed in the Google Earth Engine (Gorelick et al
2017). Monthly collections from April to October
were created for each study site aligning with the cor-
responding year of data collection. Only images with
cloudy pixel percentage lower than 80% were con-
sidered. Pixels with a cloud probability higher than
35% were removed using the s2cloudless algorithm
(Zupanc 2017). Furthermore, pixels not represent-
ing the class vegetation or not vegetated were masked
out using the Scene Classification band provided in
the Level-2A image product. The bidirectional reflect-
ance distribution function correction implemented
by Poortinga et al (2019) was applied. We then har-
monized the spatial resolution of all bands to 10 m
using bilinear interpolation, which takes the weighted
average of the four nearest pixels. For each month,
the image with the highest number of valid pixels was
selected for the spectral diversity calculation (supple-
ment: table S1). An exception was made for the data
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utilized to investigate the relationship between spec-
tral diversity and plant diversity in the Val Müstair
region. Due to the relatively frequent revisit time
of two to three days, resulting from the overlap of
Sentinel-2 tiles, we used a subset of 13 images taken
between April and October for the spectral diversity
calculation.

2.4. Vegetation indices
To compute spectral diversity, we used three Sentinel-
2 vegetation indices (VIs) across diverse spectral
ranges instead of using reflectance values. Compared
to the use of spectral bands, VIs offer a main advant-
age due to their inherent robustness in mitigating
artifacts arising from atmospheric correction pro-
cesses (Chraibi et al 2022). VIs are also easily derived,
computed consistently across study sites and sensor
(Steven et al 2003) and have been used in the context
of mapping functional trait diversity of plant com-
munities (Helfenstein et al 2022). Here, we used the
triangular greenness index (TGI, Kong et al 2016), the
MERIS terrestrial chlorophyll index (MTCI, Clevers
and Gitelson 2013), and the cellulose absorption
index (CAI, Guerschman et al 2009), each cover-
ing a different region of the spectra (i.e. visible,
near infrared and short-wave infrared, respectively)
and complementary information over time (see the
supplement: figure S1). MTCI is mainly related to
nitrogen content in grasslands (Clevers and Gitelson
2013). TGI is sensitive to the total pigment content
such as chlorophylls, carotenoids, and anthocyanins
in leaves. High CAI values occur for dry and non-
photosynthetic vegetation (Verrelst et al 2023). All
three indices were normalized (i.e. divided) by their
potential index range, i.e.MTCIwith a range from−1
to 15, TGI with a range from 0 to 10, and CAI with
a range from 0 to 2. Any values that fell below zero
or exceeded one after normalization were set to not
available values. Finally, data gaps due to clouds in the
VIs time series or values falling outside the valid range
were filled using a linear interpolation between the
datasets (function approximate of the package terra
v1.7-3 in R 4.2.0).

2.5. Spectral diversity calculation
We calculated spectral diversity components, includ-
ing temporal, spatial, and their interaction (i.e.
spatio-temporal component), as well as their contri-
bution to the overall spectral diversity in percentage
for each parcel and each VI using the function divcom
from the stdiversity v1.1.0 package (Rossi et al 2021)
in R 4.2.0 (R Core Team 2022). The resulting spec-
tral diversity components on a parcel level were then
averaged across the three VIs. In doing so, the spec-
tral diversity components were calculated as the spec-
tral variance accounting for temporal and/or spatial
variations (supplement: equations (S1)–(S3)): (i) the

spatial component of a parcel accounted for the spec-
tral variance between pixels after averaging their tem-
poral variability, (ii) the temporal component calcu-
lated the spectral variance of the average parcel value
over time and (iii) the spatio-temporal component
quantified the spectral variance among pixels over
both space and time within a parcel, encompassing
the variance not captured by the other two compon-
ents, thus serving as a measurement of spectral asyn-
chrony (Mazzochini et al 2024). As a metric for spec-
tral diversity that is normalized by the sample size, the
spectral variance is less sensitive to the spatial extent
of plant communities (Laliberté et al 2020), allowing
for its applicability and comparability across parcels
of differing sizes. For our three study sites, we demon-
strated that the spectral variance was independent of
the parcel size (see the supplement figure S2).

2.6. Statistical analyses to assess the performance
of spectral diversity components to estimate plant
diversity
For the Swiss site only, we assessed if each spec-
tral diversity component on a parcel level differed
between our seven management types with a Welch’s
ANOVA test (package onewaytests v2.7 in R). A post-
hoc Games-Howell test, which does not assume equal
variances and sample sizes, was conducted when sig-
nificant differences between management types were
detected to investigate specific pairwise comparis-
ons among management types (package userfriendly-
science v0.7.2 in R).

Moving beyond the lens ofmanagement types, we
assessed the direct association between plant species
richness and the components of spectral diversity at
the parcel level. In particular, we compared the spa-
tial and temporal spectral diversity of parcels distrib-
uted over the three grassland sites with their species
richness using the Pearson correlation coefficient (R;
package stats v3.6.2 in R).

3. Results

3.1. Assessing the spectral diversity components
for different management types
For the Swiss site, we found that each of the three
components of spectral diversity differed between
management types (Welch’s ANOVA, p < 0.01,
n = 3574; figure 2). The spatial and temporal com-
ponents displayed conspicuous trends that aligned
with land use intensity. Specifically, we observed a
gradient ranging from areas with the most intense
human intervention to those with minimal human
influence (figures 2(a) and (c)). Higher land use
intensity was associated with lower spatial diversity
but contributed to elevated temporal diversity of
spectral signals. Notably, the protected grasslands
showed a highly distinguishable spectral diversity
profile compared to the agricultural parcels. Another
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Figure 2. The three spectral diversity components. (a) spatial, (b) spatio-temporal, and (c) temporal calculated using Sentinel-2
data for 3574 parcels at the Swiss study site. The parcels span various grassland management types in the easternmost region of
Switzerland. Each box shows the middle 50% of the data points, whiskers represent the rest of the data points excluding outliers,
and the horizontal line in each box indicates the data median. Outliers defined as values that are larger than 1.5× interquartile
range away from the top or bottom edges of each box are not displayed. The brackets above the boxes show the pairwise
significant differences between management types, resulting from the post-hoc Games-Howell tests. ∗p⩽ 0.05, ∗∗p⩽ 0.01,
∗∗∗p⩽ 0.001, ∗∗∗∗p⩽ 0.0001.

notable finding was the distinct magnitudes observed
among the components of spectral diversity. The
predominant source of variance within the spectral
signals was attributed to the temporal component,
accounting for an average of 74% of the total spectral
variability across all parcels and management types.
Furthermore, approximately 17% of the total spec-
tral variability was attributed to the spatio-temporal,
while a mere 9% could be ascribed to the spatial com-
ponent. These findings underpin the significant con-
tribution of temporal variation to the spectral signal
within a highly fragmented agricultural landscape.

The post-hoc tests revealed a more pronounced
differentiation between management types in the
temporal component contrary to the spatial compon-
ent (figure 2, supplement: table S2). For the spatial
component, only artificial and low-intensity mead-
ows showed statistically significant differences from
the other management types (p < 0.01). In line with
this result, we found a wide range of spatial diversity
values within the same management (figure 2(a)).
The variation within management categories can
arise from irregular management practices within
individual parcels, which caveats the parcel-based
approach where substantial within-parcel heterogen-
eity in management occurs. This was evident in
parcels displaying a relatively high spatio-temporal
component, such as artificial and permanent mead-
ows (figure 2(b)). In particular, upon visual inspec-
tion of the satellite data, high spatio-temporal val-
ues were systematically found in parcels where mow-
ing occurred at distinct times within specific parcel
segments. In other words, the entire parcel did not
undergo simultaneous mowing.

3.2. Capability of spatial and temporal spectral
diversity data as proxies for grassland plant
diversity
When comparing the species richness with the spa-
tial component of spectral diversity at the parcel level
across three distinct study sites, there was a signi-
ficant relationship only for the U.S. site (R = 0.44;
p < 0.01; figures 3(a)–(c)). Notably, the U.S. study
site had the largest parcel sizes (table 1) and the
highest average percentage of total spectral variability
explained by the spatial component over all parcels
(14% compared to 6% for the Netherlands and 9%
for Switzerland). However, all sites showed very sim-
ilar ranges of spectral diversity in space. These find-
ings suggest that parcel size may not alter the mag-
nitude of spectral variance, but it does affect the abil-
ity to estimate species diversity. Hence, it appears that
having only a few pixels for each parcel may be insuf-
ficient for capturing robust plant diversity estimates
via the spatial component of spectral diversity.

In contrast, the temporal component of spectral
diversity was strongly associated with species rich-
ness across all sites (R = −0.45 to −0.53; p < 0.01;
figure 3), displaying consistent significant negat-
ive correlations. The temporal component of spec-
tral diversity accounted for an average of 78% of
the total spectral variability in the Netherlands and
Switzerland. In theU.S. (figure 3(f)), where only graz-
ing and no mowing occurred and recently burned
patches were excluded from the analysis, we found
lowermaximal values in temporal variance compared
to the other sites (figures 3(d) and (e)) and only 73%
of the spectral variance was explained by the temporal
component.
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Figure 3. The association of plant species richness with the spatial (a)–(c) and temporal (e), (d), (f) component of spectral
diversity calculated using Sentinel-2 data across three different study sites. Various colors correspond to different years of data
collection. R represents Pearson correlation coefficient and n the number of observations. Only for significant relationships
(p< 0.01) the regression lines with 95% confidence interval are plotted.

4. Discussion

Our finding presents a novel perspective on the rela-
tionship between spectral diversity and plant spe-
cies richness, marking the first multi-country assess-
ment of spectral diversity in space and time across
agricultural grasslands. In particular, we showed that
calculating spectral diversity from Sentinel-2 data at
the parcel level proved to be useful for quantify-
ing plant species richness. Interestingly, our findings

highlight the significance of the temporal compon-
ent of spectral diversity, rather than the spatial com-
ponent. Specifically, we observed that decreased tem-
poral variance calculated over a growing season cor-
responds to greater plant diversity. We also noted
that the different components of spectral diversity can
exhibit contrasting relationships with plant diversity.
Consistent with previous studies (Lopes et al 2017,
Rossi et al 2021), not differentiating between tem-
poral and spatial components of spectral diversity
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may result in a weak relationship between spec-
tral diversity and plant diversity within grasslands.
Therefore, we recommend utilizing both temporal
and spatial components of spectral diversity to pre-
dict plant diversity from space. Moreover, the spatio-
temporal component offers an avenue for identify-
ing non-uniformly managed parcels, thus facilitat-
ing a more precise interpretation of spectral diversity
patterns.

4.1. Temporal component of spectral diversity
offers a pathway to biodiversity estimations
Our findings across multiple grassland sites suggest
significant negative correlation between the temporal
component of spectral diversity and plant diversity,
reflecting the biodiversity decline as land use intens-
ifies (Weiner et al 2011, Allan et al 2014) and the
stability of an ecosystem decreases (Radeloff et al
2019). In line with previous studies, land use intens-
ity of grasslands can be estimated from temporal vari-
ations in a spectral signal (Franke et al 2012, Gómez
Giménez et al 2017, Reinermann et al 2020, Lange
et al 2022, Weber et al 2023). The highlighted con-
nections between the temporal component of spec-
tral diversity, land use intensity, and plant species
richness introduce an intriguing concept: spectral
variance in time can be a versatile and adaptable
approach for biodiversity monitoring across diverse
sites. Quantifying plant diversity using spectral vari-
ance has low computation cost, which further bol-
sters its appeal and potential for global applicability.
Additionally, spectral variance can provide a valuable
input variable for machine learning-based geospatial
biodiversity modeling.

While other spaceborne estimations of land use
intensity in grasslands often only encompass the
number of mowing events and rely on one VI
(Griffiths et al 2020, Schwieder et al 2022), the tem-
poral facet of spectral diversity emerges as a viable
solution that responds to another range of manage-
ment practices too, such as tilling, grazing, and irrig-
ation. Furthermore, the calculation of the spectral
variance in time is not constrained solely to spe-
cific spectral indices as including the full spectral
signature of remotely-sensed data to calculate spec-
tral diversity is straightforward. Accounting for the
full spectral signature may capture a wider extent
of relevant grassland management practices, reduce
uncertainties (Hank et al 2019), and take advantage
of the increased spectral coverage of future space-
borne missions such as ESA’s CHIME (Copernicus
Hyperspectral ImagingMission for the Environment,
Rast et al 2021) andNASA’s SBG (Surface Biology and
Geology, Cawse-Nicholson et al 2021). The increased
availability of spectral information should also stim-
ulate investigating the contribution of different spec-
tral features (e.g. spectral bands, VIs, and optical

traits) to the spectral diversity over time, an aspect not
explored in our study.

While our findings underpin the significance of
considering the temporal dimension of spectral data,
using it to estimate plant species richness can also
present several potential challenges. For example, in
our Swiss study site, abandoned grasslands were sub-
ject to grazing by wild ungulates which fosters a rich
mosaic of plant communities (Schütz et al 2003, Rossi
et al 2020). Yet, abandoned grasslands elsewhere, des-
pite displaying a low temporal variance in remotely
sensed signals, might also exhibit diminished plant
diversity with some species becoming dominant, for-
cing others to recede (Niedrist et al 2009). Other dis-
cording scenarios might involve systems that exhibit
pronounced temporal variance in the spectral sig-
natures due to natural or prescribed disturbances
such as flooding or fires, that can increase plant
diversity (e.g. Johnson et al 2016, Pausas and Ribeiro
2017). To address these issues, we excluded recently
burned parcels in the U.S. from our analysis due
to their disproportionately high spectral variance.
Finally, changes in landuse intensity often correspond
to subtle spectral changes, complicating their distinc-
tion from phenological changes or various stressors
such as drought (Kuemmerle et al 2013, De Vroey
et al 2022). These issues could by particularly pro-
nounced in tropical grasslands, having a distinct wet
and dry season (Ma et al 2013). Therefore, fur-
ther investigations and validation against phenolo-
gical cycles and anthropogenic stressors such asmow-
ing, grazing, tilling and irrigation in different grass-
lands are needed to comprehend the precise interac-
tions between spectral diversity in time, agricultural
practices and ecological dynamics. To that end, hav-
ing access to spaceborne data with a high revisit time
(e.g. every few days) becomes crucial for capturing all
spectral fluctuations within grassland parcels.

4.2. The spatial perspective on the plant
diversity-spectral diversity relationship
Contrary to the temporal component, the spatial
component of spectral diversity exhibited only par-
tial association with plant species richness. This res-
ult is not surprising given the conflicting spectral
diversity-plant diversity relationship found in other
studies (Thornley et al 2023). In particular, the spec-
tral diversity-plant diversity relationship can be con-
founded by several factors, such as vegetation cover,
soil exposure, and canopy structure (Gholizadeh et al
2018, Conti et al 2021, Hauser et al 2021, Rossi et al
2022). Previous studies have suggested that higher
spatial resolution could enhance the relationship
between the spatial component of spectral diversity
and plant diversity (Wang et al 2018, Pacheco-
Labrador et al 2022). We also suggest that another
aspect of spatial scale—that is plot size, or in our
case, parcel size—influenced our results (Anderson
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2018, Gholizadeh et al 2022, Rossi and Gholizadeh
2023). We found that the spatial resolution provided
by spaceborne sensors similar to Sentinel-2 was inad-
equate for effectively employing the SVH in smaller
parcels of the Dutch and Swiss sites, but was sufficient
for the larger parcels in theU.S. site. Amoderate num-
ber of pixels per parcel not only hampers capturing
fine-scale features but also results in an unstable spec-
tral variance (Piovesana and Senior 2018), increas-
ing the susceptibility of spectral diversity to artifacts
and noise. Our results align with Robertson et al
(2023), which showed thatmapping spectral diversity
depends on both the spatial resolution and dimen-
sions of the mapping windows. Therefore, we believe
that the parcel to pixel size ratio is critical for accurate
estimation of plant diversity from space. For example,
in the U.S. study site, the parcel to pixel size ratio was
in the order of 1:10 000, indicating that a success-
ful application of the SVH for parcels in the Dutch
and Swiss sites might require pixel sizes of approxim-
ately 10–30 cm. Future research should continue to
explore the idea of an optimal ratio between parcel
and pixel size to inform ongoing sensor development.
Additionally, in situ data collection protocol differ-
ences among our study sites (plot size, type and num-
ber)may have influenced the results. Despite, the rela-
tionship between species richness and area sampled
in all study site may have reached an inflection point
(see species area curves in supplement figure S3), the
sampling of the U.S. site, with its high number and
spatially well distributed plots, may bemore adequate
to capture the majority of the plant richness in a par-
cel. These findings highlight the challenge of design-
ing a representative field sampling protocol which
is achievable within a reasonable time frame, aligns
with the scale of remote sensing data and captures
all species—an issue that is to some extent a para-
dox, as remote sensing data are typically touted for its
potential to overcome such limitations. Future studies
could try tomatch satellite data with in situ datamore
effectively through methods like spatial interpolation
of in situ data (Rossi and Gholizadeh 2023), extrapol-
ation of species-area curves and the use of drone data
(Alvarez-Vanhard et al 2021).

4.3. Spectral diversity at the parcel level
Our results at the parcel level and the previous weak
performance found by window-based approaches in
agricultural landscapes (Schmidtlein and Fassnacht
2017, Perrone et al 2023), heavily influenced by
factors such as field edges and varying management
stages (figure 1), suggest the potential of parcel-
based spectral diversity for remote sensing of plant
diversity. A parcel-based approach is feasible only
when the necessary information is accessible or when
parcels are easily distinguishable using segmentation
algorithms (Ez-zahouani et al 2023). However, in the
latter case, the spectral diversity of a parcel might

be constrained, as the pixel values of a generated
segment display comparable spectral values in space
(Hossain and Chen 2019). A possible solution could
involve segmenting ecosystems into patches based
on environmental variables instead. If feasible, the
parcel or object-based approaches could be exten-
ded beyond agricultural systems (White et al 2010,
Zheng et al 2022), providing a solution to the arbit-
rariness associated with selecting window sizes that
may not represent meaningful geographical and eco-
logical objects or units (Fisher 1997, Ricklefs 2008).
Moreover, the adoption of a parcel-based approach
offers distinct advantages compared to regular-sized
windows or pixels, particularly within the framework
of multi-temporal methods. By averaging data at the
parcel level, we mitigate misregistration problems
(Skakun et al 2017) while also reducing the impact
of factors such as cloud edges that are challenging
to remove. Nevertheless, a systematic comparison
between window-based and parcel level approaches
is still missing, leaving room for future studies to
explore the efficacy and applicability of the different
approaches.

5. Conclusions

In this study, we re-evaluated the SVH to include the
temporal dimension and calculated spectral diversity
on a parcel level as opposed to processing windows
with arbitrary sizes. Across three sites, we found that
the plant diversity of a given area is negatively asso-
ciated with the spectral variation in time and that
considering the temporal dimension of the SVH is
necessary for mapping plant diversity. As such, the
temporal SVH may offer a framework for studying
plant diversity which can be further integrated into
different modeling pipelines aiming to estimate biod-
iversity dynamics from space. Additionally, within
agricultural landscapes, it is imperative to account for
spectral variation in time, as fluctuations over time
have been identified as the primary driver of spec-
tral variance. Consequently, relying solely on mono-
temporal remote sensing methods to estimate plant
diversity can yield both limited and potentially mis-
leading results and leave out valuable information on
land use intensity.

Estimating plant diversity based on regular-sized
windows can be problematic when applied to het-
erogeneous human-dominated landscapes because
such regular-sized units do not represent actual spa-
tial entities of real-world phenomena and are rather
arbitrary. In contrast, parcel-based approaches bet-
ter delineate observable management units that dir-
ectly affect biodiversity. Through remote estima-
tion of plant diversity at scales relevant for human
decision-making, we can provide a more accur-
ate assessment of plant diversity in agricultural
landscapes.
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