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Abstract
High mountains are climate change hotspots. Quickly rising temperatures trigger vegetation shifts such as
upslope migration, possibly threatening mountain biodiversity. At the same time, mountain slopes are
becoming increasingly unstable due to degrading permafrost and changing rain and snowfall regimes, which
favour slope movements such as rockfall and debris flows. Slope movements can limit plant colonization,
while, at the same time, plant colonization can stabilize moving slopes. Thus, we here propose that response
of high mountain environments to climate change depends on a ‘biogeomorphic balance’ between slope
movement intensity and the trait-dependent ability of mountain plants to survive and stabilize slopes. We
envision three possible scenarios of biogeomorphic balance: (1) Intensifying slope movements limit vegetation
shifts and thus amplify instability. (2) Shifting ecosystem engineer species reduce slope movement and fa-
cilitate shifts for less movement-adapted species. (3) Trees and tall shrubs shifting on stable slopes limit slope
instability but decrease biodiversity. Previous geomorphic, ecological and palaeoecological studies support all
three scenarios. Given differences in ecologic and geomorphic response rates to climate change, as well as
high environmental heterogeneity and elevational gradients in mountain environments, we posit that future
biogeomorphic balances will be variable and heterogeneous in time and space. To further unravel future
biogeomorphic balances, we propose three new research directions for joint research of mountain geo-
morphologists and ecologists, using advancing field measurement, remote sensing and modelling techniques.
Recognizing high mountains as ‘biogeomorphic ecosystems’ will help to better safeguard mountain infra-
structure, lives and livelihoods of millions of people around the world.
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High mountain landscapes and
ecosystems in a changing climate

High mountains are geomorphologically and eco-
logically highly diverse and dynamic environments.
Their extreme relief with steep slopes, high tectonic
activity, glacial imprint and climatic extremes pro-
motes rapid erosion rates through a variety of geo-
morphic processes (Figure 1; Barsch and Caine,
1984; Herman et al., 2021; Hinderer et al., 2013).
Mountain plants, arranged in elevation-dependent
vegetation zones, are adapted to these extreme
conditions (Humboldt and Bonpland, 1807; Körner,
2003) and contribute to the extraordinarily high
biodiversity in high mountain environments
(Antonelli et al., 2018; Rahbek et al., 2019).

In high mountain regions, warming occurs at a
much faster pace than in lowlands (Pepin et al., 2015,
2022), making them climate change hotspots (Hock
et al., 2019a, 2019b). This accelerated warming
causes fast mountain glacier melt, permafrost de-
crease and ground ice loss (Biskaborn et al., 2019;
Rounce et al., 2023). Together with changing rain and
snowfall regimes (Beniston et al., 2018; Gobiet et al.,
2014), those cryospheric changes are intensifying
mountain slope movements and associated slope in-
stability (Figure 1; Arenson and Jakob, 2017; Clague
et al., 2012; Stoffel and Huggel, 2012). Rockfall and
landslide activity tend to increase in permafrost en-
vironments and to shift to increasingly higher ele-
vations (Allen and Huggel, 2013; Draebing et al.,
2022; Ravanel and Deline, 2011; Savi et al., 2020).

Figure 1. High mountain environments in a changing climate. Warmer temperatures and more intense precipitation are
expected to increase slope movements through various geomorphic processes. The same changes also push plants to
shift through key ecological processes. Thereby, slope movements can increase and biodiversity decrease, with significant
impacts on people, their livelihoods and infrastructure in mountain environments. For interpretation of the references to
colours in this figure legend, refer to the online version of this article.
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Large and potentially very destructive rock-ice ava-
lanches become more common (Jakob, 2022; Shugar
et al., 2021) and rock glaciers tendmovemore quickly
(Marcer et al., 2021) until the ice they contain has
disappeared. Debris flows are expected to decrease in
frequency but to increase in magnitude (Hirschberg
et al., 2021; Stoffel et al., 2013) and to occur over
most months in the future (Stoffel and Corona, 2018).
More frequent extreme rainfall events can increase
shallow landslide processes (Alewell et al., 2020;
Geitner et al., 2021). When affecting high mountain
communities, these intensifying slope movements
turn into natural hazards.

At the same time, climatic changes also shift the
conditions under which mountain plants can survive
and thrive to higher elevations. Consequently, moun-
tain plant species move their altitudinal distribution
upwards, leading to increases in vegetation richness
and density at high elevations (Gottfried et al., 2012;
Grytnes et al., 2014; Steinbauer et al., 2018;Wipf et al.,
2013). However, mountain plant species were also
found to shift downslope, for example, in relation to
changing climatic water balance (Crimmins et al., 2011;
Rapacciuolo et al., 2014). Through dispersal, formerly
bare ground, especially at higher elevations, can be-
come colonized, and vegetation grows denser and
taller. This happens both due to biomass increases of
established species, and due to establishment of rela-
tively taller and more competitive species from lower
elevations (Bjorkman et al., 2018a, 2018b; Jaroszynska
et al., 2023). Upslope shifts of woody species such as
trees and tall shrubs cause reafforestation and ‘shru-
bification’ (Bader et al., 2020; Myers-Smith et al.,
2011; Myers-Smith and Hik, 2018), which are key
processes affecting ecosystem composition, structure
and functioning. The entity of these processes are
visible as widespread mountain greening observed
from space (Choler et al., 2021; Rumpf et al., 2022).
While vegetation productivity may rise overall, how-
ever, a number of species may fail to persist under
altered biotic and abiotic conditions, or not shift
successfully – or quickly enough –with climate change
(Dullinger et al., 2012; Steinbauer et al., 2018).

While mountain geomorphologists investigate slope
movements on mostly unvegetated, highly unstable
alpine slopes, such as rockwalls, talus slopes and active
rock glaciers (Arenson and Jakob, 2017; Ravanel and

Deline, 2011), classic vegetation ecology tends to focus
on stable and homogeneous conditions (Braun-
Blanquet, 1964). Yet, in high mountain environ-
ments, slope movements are a very common and
widespread phenomenon. Feedbacks between slope
movements and shifting plants could play a strong role
for the response of high mountain landscapes and
ecosystems to climate change. For instance, mountain
biogeomorphic research showed that strong slope
movements can limit plant colonization and develop-
ment (Eichel et al., 2016; Giaccone et al., 2019; Pérez,
2012). However, once vegetation manages to establish
and grow, it can strongly reduce slope movements
(Eichel et al., 2017; Haselberger et al., 2021; Marston,
2010). Yet, only few studies have hitherto considered
the impact of slope movements on upslope plant mi-
gration (Macias-Fauria and Johnson, 2013; Randin
et al., 2009; Resler, 2006), or how shifting plants
may stabilize moving slopes (Greenwood and Jump,
2014; Moos et al., 2021; Sebald et al., 2019). Con-
sequently, biogeomorphic feedbacks between moving
slopes and shifting plants remain rather inadequately
understood today. Yet, such an understanding would
indeed be vital for securing mountain infrastructure,
tourism, recreation and the lives and livelihoods of 671
million people living in mountain regions worldwide
(Hock et al., 2019a, 2019b; Huggel et al., 2019).

In this progress report, we therefore develop the
concept of ‘biogeomorphic balance’ to improve our
understanding of how downward slopemovements and
upwards shifting plants interact in the context of climate
change in high mountain environments. Based on
previous geomorphic, ecological and palaeoecological
research, we identify three biogeomorphic balance
scenarios and discuss their variability in time and space.
Finally, we propose three new research directions for
joint ecological and geomorphologic research, which
will help to advance understanding of climate change
impacts on high mountain landscapes and ecosystems.

Response of high mountain
environments to climate change – a
question of biogeomorphic balance?

Biogeomorphic research on alpine lateral moraines
slopes found close relationships between themagnitude
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and frequency of geomorphic processes and plant
species response and effect traits that determine spe-
cies’ survival of (resilience) and effect on (resistance)
geomorphic disturbances (Eichel et al., 2016). Similar
relationships between slope movement intensities and
plant traits are found on mountain slopes (Figure 2).

High magnitude or high frequency processes,
such as rockfall, debris flows or rock glacier creep
favour resilient pioneer species that tolerate
movement or quickly regenerate after a disturbance
(Cannone and Gerdol, 2003; Eichel et al., 2016).
Flexible stems, dense fine root systems, quick
growth rates and short life spans are typical traits
enabling high resilience of pioneer species such as
Linaria alpina or Ranunculus glacialis (Kutschera
and Lichtenegger, 2013; Schröter et al., 1926). On
slopes moving less intensely, for example, by so-
lifluction (Eichel et al., 2017; Matsuoka, 2001;
Price, 1974), soil erosion (Burylo et al., 2014;
Frankl et al., 2020) and shallow landsliding
(Löbmann et al., 2020; Pérez, 2012), a dominance
of plant species that are less resilient but more
resistant towards slope movements can be ob-
served. By forming low lying mats, dense tussocks,
rosettes or cushions, or by having close-set, low-
lying stems, often extending through clonal growth,

these ‘biogeomorphic ecosystem engineer’ species
can not only survive but even reduce slope
movement (Eichel et al., 2023; Haussmann et al.,
2009; Pérez, 2009). Examples include prostrate
shrubs (Dryas octopetala, Muehlenbeckia axillaris,
Salix serpillifolia), graminoids (Festuca spp.),
cushion plants (e.g. Azorella spp.) as well as certain
herb (Anthyllis vulneraria) and shrub species
(Coriaria angustissima, Salix hastata). On stable
slopes, one observes a dominance of grassland, tall
shrub and tree species that cannot deal well with
slope movement, for example, during establishment
or if soil moves in their rooting zone (Cannone and
Gerdol, 2003). However, specifically montane
shrubs and trees, such as Fagus sylvatica and Picea
abies, have strong effect traits that stabilize moving
slopes. Their large stems and biomass add vege-
tation resistance to flow and protect from rockfall,
while their extensive root systems add root cohe-
sion (Rickli et al., 2019; Stokes et al., 2005).

Consequently, we suggest that response of moun-
tain ecosystems and landscapes to climate change will
depend on a ‘biogeomorphic balance’ between slope
movement intensity and the capacity of shifting plant
species to survive and reduce slope movement, de-
pending on their functional traits (Figure 3(a)).

Figure 2. Relationships between slope movement intensity and plant species’ response and effect traits towards slope
movements on high mountain slopes. For interpretation of the references to colours in this figure legend, refer to the
online version of this article.
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Figure 3. A ‘biogeomorphic balance’ concept for high mountain environments with three possible scenarios (A–C) in a
changing climate. (a) Illustration of the biogeomorphic balance between moving slopes and shifting plants, depending on
slope movement intensity and the trait-dependent ability of plant species to survive and reduce slope movements. (b)
Scenario A: Intensifying slope movements limit vegetation shifts and thereby amplify. (c) Scenario B: Shifting
biogeomorphic ecosystem engineer species reduce slope movement and facilitate vegetation shifts. (d) Scenario C:
Shifting trees and tall shrubs on and onto stable slopes protect from slope movements but outcompete alpine species and
reduce biodiversity. For interpretation of the references to colours in this figure legend, refer to the online version of this
article.
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Three scenarios of biogeomorphic
balance in highmountain environments

In a changing climate, we expect three possible
scenarios of future biogeomorphic balance
(Figure 3(b)–(d)). All scenarios are currently ob-
served and were reconstructed to have happened
during and after the Younger Dryas (∼12,500–5800
BP).

Scenario A: Intensifying slope movements limit
vegetation shifts and thereby amplify

An increase in either the magnitude or frequency of
rockfall, rock glacier creep, debris flows and other
landslides over the coming decades (Hock et al.,
2019a, 2019b; Ravanel and Deline, 2011; Stoffel
and Huggel, 2012) could limit required plant shifts
on local scales. High intensity slope movements can
disturb or even remove existing vegetation (Pérez,
2010) or prevent its densification and biomass in-
crease (Aalto et al., 2021). Plant species with traits
that are not adapted to slope movements, such as
tree and some tall shrub species (Macias-Fauria and
Johnson, 2013; Myers-Smith and Hik, 2018; Resler,
2006), grassland and snowbed species (Bürli et al.,
2021; Pérez, 2009) cannot establish on talus slopes
affected by rockfall, snow avalanches and debris
flows (Pérez, 2012) or on active rock glaciers
(Burga et al., 2004; Stefano et al., 2021). Thus,
when trying to migrate into upslope areas charac-
terized by the most intense slope movements
(Slaymaker and Embleton-Hamann, 2018), these
species may not succeed and could thus be lost.
Vegetation regression and declining population
sizes of arctic-alpine species due to permafrost
degradation, rockfall and landslide activity are
currently observed at high elevations (Cannone
et al., 2007; Carlson et al., 2017; Watts et al.,
2022) and also occurred in the past. Pollen analy-
sis found that during the Younger Dryas between
11,000 and 9800 BP, abundances of tree, tall and
prostrate shrub species and overall vegetation cover
decreased, while abundances of pioneer species
increased (Tinner et al., 1996). High sedimentation
rates reconstructed from alpine lake sediments

indicate that this was caused by increasing slope
movement activity. Thus, intensifying slope
movements due to climate change could create a
positive feedback loop further amplifying slope
movements due to the removal of vegetation.
Amplified slope movements could turn into natural
hazards and enhance risk for mountain communities
and infrastructure.

Scenario B: Shifting biogeomorphic ecosystem
engineer species reduce slope movements and
facilitate vegetation shifts

While several high intensity processes such as rock
avalanches and rock glacier creep are not affected
by plants, vegetation can stabilize lower intensity
processes such as talus shift, soil erosion, land-
sliding and solifluction (Burylo et al., 2011; Eichel
et al., 2017; Geitner et al., 2021; Pérez, 2012). When
slope movement intensities decrease, for example,
once rock glacier permafrost is gone (Marcer et al.,
2021) or rockfall intensities decrease due to
changing snow cover and duration (Draebing et al.,
2014), biogeomorphic ecosystem engineer species
could establish, densify or increase their biomass.
Positive response of prostate engineer shrubs such
as D. octopetala to elevated temperatures suggest
that densification and biomass increase could
happen quickly (Welker et al., 1997), while estab-
lishment, for example, of engineer cushion plants
was found to take more time (Matteodo et al., 2013).
With their dense above ground biomass close to the
ground, engineer species protect the soil surface by
intercepting rainfall and obstructing runoff (Burylo
et al., 2011; Kervroëdan et al., 2021) and trap
sediments (Eichel et al., 2023). Their roots and root
associated mycorrhiza can play a key role for soil
stability (Beeli et al., 2011; Norris et al., 2008a,
2008b; Vannoppen et al., 2015) and hold moving
sediments in place (Eichel et al., 2023). Thus, es-
pecially densification, increase in biomass and
cover, for example, by merging ecosystem engineer
patches, would be efficient for slope stabilization
(Eichel et al., 2016; Marston, 2010). Besides local
stabilization, engineer species also improve soil
conditions due to organic matter provision and
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nitrogen fixation (Eichel et al., 2023; Pérez, 2009)
and even create small scale landforms such as so-
lifluction steps, terraces and lobes (Eichel et al.,
2017). In combination, those engineer effects pro-
mote establishment for other species (Butler et al.,
2004; Cavieres et al., 2016; Resler, 2006; Zuber,
1968), which is often necessary for upslope mi-
gration of species from lower sites, for example, for
treeline advance (Brodersen et al., 2019; Choler
et al., 2001; Resler, 2006). Pine trees, for exam-
ple, need facilitation by established plants or fa-
vourable microsites in the first 1–2 years to
successfully establish (Batllori et al., 2009). Con-
sequently, successful upslope migration of eco-
system engineer species could reduce slope
movements and facilitate survival and migration for
other species, thereby preserving biodiversity.

Remote sensing analysis shows evidence for in-
creasing colonization and biomass at rocky
habitats >2500 m in the Écrins (France; Carlson
et al., 2017), while field studies using repeated
plot sampling found that decreasing rock glacier
movement encourages vegetation development
(Cannone and Piccinelli, 2021). At the onset of the
Younger Dryas (12,000–11,000 BP), lake sedimen-
tation decreased while dwarf willow pollen increased
(Salix herbacea, Salix retusa, S. serpillifolia; Tinner
et al., 1996), suggesting that those prostrate shrubs
acted as stabilizing ecosystem engineers on scree
slopes.

Scenario C: Trees and tall shrubs shifting on
and onto stable slopes protect from slope
movements but outcompete alpine species
and decimate local biodiversity

Slope stabilization, for example, by loss of per-
mafrost and periglacial processes over the next
decades (Aalto et al., 2014), could enable shrub and
tree species to successfully shift, for example, by
densifying and increasing their biomass in existing
positions or shifting upslope onto previously
moving slopes (Burga et al., 2004; Myers-Smith and
Hik, 2018). Established trees facilitate establish-
ment for other tree seedlings by providing protec-
tion and a favourable microclimate (Bader et al.,

2020; Butler et al., 2007; Resler, 2006). Densifying
forests protect downslope communities and infra-
structure from debris flows, rockfall and snow av-
alanches (e.g. Lingua et al., 2020; Malik et al.,
2013; Moos et al., 2018, 2019). Efficient debris
flow and rockfall protection, for example, by re-
ducing runout length is linked to high stem diam-
eters or stem densities of tree species (Bettella et al.,
2018; Guthrie et al., 2010; Michelini et al., 2017).
However, upslope advance by competitive tall
shrub and tree species and slope stabilization will
reduce habitat area for light-demanding alpine
species and limit downslope movement for those
species (Choler et al., 2021; Rixen et al., 2007;
Watts et al., 2022), potentially reducing biodiversity
locally. Rapid shrub and tree upslope expansion is
frequently reported for stable slopes at lower ele-
vations (Filippa et al., 2019; Myers-Smith and Hik,
2018) or for stabilizing slopes at intermediate ele-
vations, such as inactive and relict rock glaciers
(Burga et al., 2004; Cannone and Gerdol, 2003). A
few centuries after the Younger Dryas (9200–5800
BP), tree pollen started to dominate as temperatures
increased, while pioneer and prostrate shrub pollen
declined and lake sedimentation decreased (Tinner
et al., 1996).

Future mountain biogeomorphic
balances in time and space

High heterogeneity and elevational gradients in high
mountain environments, coupled with geomorphic
and ecological processes acting on multiple spatial
and temporal scales (Malanson et al., 2019), suggest
that future biogeomorphic balances will be variable
in time (Situations T1–3, Figure 4) and space (Sit-
uations S1–3, Figure 4).

Biogeomorphic balances in time: The role of
geomorphic and ecological response rates

Variable response rates and sensitivity of geomor-
phic and ecological processes to climate change
(Dullinger et al., 2012; Knight and Harrison, 2023)
could influence which biogeomorphic balances will
dominate where over the coming decades to
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centuries on a landscape scale (Figure 4). Perma-
frost thaw and glacier melt are expected to accel-
erate further with rising temperatures over the next
decades (Aalto et al., 2014; Rounce et al., 2023),
directly causing increase in rock slope destabili-
zation, rockfall frequencies and rock glacier de-
stabilization (Marcer et al., 2021; McColl and
Draebing, 2019; Savi et al., 2020). Likewise,
shrubs and trees species respond quickly to climate
change, visible in the form of tall shrub cover
expanding into the alpine tundra (Formica et al.,
2014) and widely upslope shifting treelines
(Hansson et al., 2021). In combination, quickly
responding unstable slopes and shifting competitive
shrub and tree species could strongly reduce hab-
itats for less competitive ecosystem engineer and
possibly even pioneer species across the landscape
(Situation T1, Figure 4). Thus, biodiversity could
reduce rapidly. Yet, shifting tall vegetation could
well counteract increasing rockfall and debris flow
activity, thereby decreasing slope movements.

Alpine engineer and possibly also pioneer species
could survive at mountain tops (Situation T2,
Figure 4), on which species richness strongly in-
creased over the past decades (Steinbauer et al.,
2018). However, this would require quick
dispersal to the mountain tops, working well for
propagules with achene or pappus appendages,
such as Asteraceae species (Matteodo et al., 2013).
If engineer species make it to the mountain tops,
they might exclude less competitive pioneer species
through their dense, impenetrable cover (Malanson
et al., 2019, Butler et al. 2009). Once permafrost
and glaciers disappear, slope movements are ex-
pected to decrease within decades to centuries
(Aalto et al., 2017; Ballantyne, 2002; Vivero and
Lambiel, 2019). If ecosystem engineer species
survived until slope movements start to decrease,
they could colonize the stabilizing surfaces from
their refugia and actively contribute to stabilization
once they reach a certain biomass or cover (Situ-
ation T3, Eichel et al., 2016). This could amplify the

Figure 4. Variability of future biogeomorphic balances with different possible situations in time (T1–3) and space (S1–3)
on spatiotemporal scales from local/years-decades to regional/centuries-millennia. For interpretation of the references
to colours in this figure legend, refer to the online version of this article.
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reduction of slope movements in this situation and
locally protect biodiversity if new landforms are
created.

Biogeomorphic balances in space: The role of
environmental heterogeneity and
elevational gradients

High mountain environments are highly heteroge-
neous and geodiverse from local to regional scales
and extend over large elevation gradients (Bollati and
Cavalli, 2021; Gordon, 2018).

Their local to landscape scale mosaic of habitats
offers opportunities for many species to survive
locally. Local scale heterogeneity is, for example,
created by periglacial and glacial landforms such as
solifluction lobes, rock glaciers, patterned ground
and moraines (Situation S1). Due to strong variations
in sediment properties, microtopography, microcli-
mate and movement rates within and between
landforms (Eichel et al. 2020), landforms provide
habitats for many different plant species (Tukiainen
et al., 2019) and thereby safeguard local (α-)diver-
sity. Downslope expansion of geomorphic processes
such as debris flows and snow avalanches can create
additional habitats and refugia at the local scale
(Situation S1, Gentili et al., 2015; Körner, 2003) and
also could also promote downslope dispersal and
plant shifts (Crimmins et al., 2011; Raffl et al., 2006;
Rapacciuolo et al., 2014). However, downslope
expansion of geomorphic processes can also increase
natural hazards (Stoffel and Huggel, 2012).

On a landscape scale, additional environmental
heterogeneity is created, for example, by varying
solar energy input at different aspects (Kulonen et al.,
2018; Scherrer and Körner, 2010) and topography-
and cryosphere-related climatic variability
(Matthews, 1992; Patsiou et al., 2017) (Situation S2).
Together with differently aged landform palimpsests
resulting from previous glaciations and deglaciations
(Stroeven et al., 2013), this will likely ensure that
increasing slope movements will not act as a land-
scape scale barrier for upslope migrating plant
species, preserving landscape-scale (γ-)diversity.
Further attention should be given in this context to
solifluction processes, which are moving soil

extensively across the landscape (Del Vecchio et al.,
2022; Rouyet et al., 2021) and could therefore act as
a more widespread migration barrier than other
geomorphic processes.

On a landscape to regional scale, the vertical
distance between intensifying slope movements at
highest elevations and the upslope migrating tall
shrubs and trees from the montane to subalpine zone
could serve as a buffer for biodiversity decline
(Situation S3). Even if slope movements and upslope
tree and tall shrub migration both intensify within the
coming decades, there might still be sufficient space
for pioneer and engineer species to survive in the
shrinking alpine zone until slope movements de-
crease with loss of permafrost and glaciers.

A mosaic landscape preserving biodiversity was
reconstructed to have occurred directly following the
Younger Dryas (9800–9200 BP). Over several few
centuries, a mosaic of open Larix decidua stands,
Juniperus nana shrublands and alpine meadow,
snowbed and debris communities (Caryophyllaceae,
Rumex spp., Salix spp. and D. octopetala) charac-
terized the alpine treeline (Tinner et al., 1996).

Go or grow? New research directions
for high mountain environments

The biogeomorphic balance scenarios and their vari-
ability described in this contribution indicate that also
when taking biogeomorphic feedbacks into account,
increasing slope movements and biodiversity loss re-
main a possible consequence of climate change. At the
same time, however, our biogeomorphic balances
suggest that wemight also see positive developments in
terms of natural hazards protection by advancing
treelines and/or the preservation of alpine biodiversity
in geodiversity-created (micro)refugia due to bio-
geomorphic feedbacks.

To successfully unravel (future) biogeomorphic
balances in time and space and better apprehend
response of high mountain environments to climate
change, we suggest three new research directions.
Resulting improved understanding of biogeomorphic
balances in a changing climate will help to achieve
natural hazard protection and biodiversity conver-
sation at the same time.
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Biogeomorphic balance mechanisms: Linking
plant traits to slope movement intensities

The biogeomorphic balance is largely dependent on
whether plant species can establish on and/or sta-
bilize moving slopes. This in turn depends on re-
sponse and effect traits of high mountain plant
species (Eichel et al., 2023), their associated my-
corrhiza (Graf et al., 2019) or their community (Pohl
et al., 2009). Knowledge on adaptations of high
mountain species to slope movements exists already
for a long time (Schröter et al., 1926), but rela-
tionships between plant traits and movement inten-
sities have rarely been quantified. To achieve this,
measurements of mountain plant traits, facilitated by
well-standardized methods (Freschet et al., 2021;
Pérez-Harguindeguy et al., 2013), could be carried
out on slopes with known movement rates increas-
ingly provided by new techniques such as terrestrial
laser scanning, uncrewed aerial vehicle (UAV) sur-
veys and InSAR (Hartl et al., 2023; Hendrickx et al.,
2020; Rouyet et al., 2021).While extensive plant trait
databases exist (Bjorkman et al., 2018a, 2018b;
Kattge et al., 2011, 2020; Maitner et al., 2018), data
availability is often limited for alpine species and
many important biomechanical traits, such as root
tensile strength or modulus of elasticity, are far from
being included routinely in ecological databases. Yet,
the insights that one can gain on how and which
mountain species deal with slope movements will
ultimately help efforts of stabilizing moving slopes,
for example, by using nature-based solutions (Norris
et al., 2008a, 2008b; Viles and Coombes, 2022), but
also to protect biodiversity by identifying species that
cannot cope with very active or very stable slopes.

Biogeomorphic balance patterns: Detecting
and mapping biogeomorphic balances in time
and space

To unravel future biogeomorphic balances and their
impacts on slope movements and biodiversity, we need
to better understand which scenarios and situations are
likely to happen when and where. Monitoring and
reconstructing linked geomorphic and vegetation
changes can help us to better understand bio-
geomorphic feedbacks and balances. Combining

ecological and geomorphic field techniques, such as
repeated vegetation surveys (Cannone and Piccinelli
2021; Grabherr et al., 2000) and continuous geomor-
phic monitoring (Belli et al., 2022;Mourey et al., 2022)
can determine decadal scale biogeomorphic dynamics
on local scales. Especially UAV surveys and den-
droecology are of great value for biogeomorphic re-
search as they can monitor or reconstruct geomorphic
(De Haas et al., 2021; Favillier et al., 2018; Stoffel,
2010) and vegetation changes (Francon et al., 2020;
Wei et al., 2021) at the same time. Satellite remote
sensing can help to reconstruct and monitor bio-
geomorphic dynamics on landscape scales (Betz, 2021;
Marchetti et al., 2020), with high spatial and temporal
resolutions (e.g. 0.5 m resolution, multiple visits per
day for Planet satellites) especially for the past few
years, and lower spatial and temporal resolutions for the
past decades (e.g. 30 m for Landsat satellites, images
once a month). Forward simulation modelling can help
looking into the future, though ecological focus on
statistical models (e.g. Phillips et al., 2006) and geo-
morphic focus on process-based models complicates
their integration. Recent studies incorporated geo-
morphic properties and processes into statistical species
distribution modelling (e.g. Bailey et al., 2018; Randin
et al., 2009) and vegetation dynamics into process-
based geomorphic models (e.g. Karssenberg et al.,
2017; Schmaltz et al., 2019). Given that statistical
models rely on current data, their ability to predict the
future might be limited (Del Vecchio et al., 2022),
making combined process-based models, such as used
by Moos et al. (2021) to assess plant shift effects on
future rockfall risk, a better choice. Increasingly and
freely available topographic, climatic, microclimatic
and permafrost data (e.g. Kenner et al., 2019;
Lembrechts et al., 2020; Michel et al., 2021) now allow
assessment of local-to-regional scale factors influenc-
ing both timescales and distributions of biogeomorphic
balances.

Biogeomorphic balance understanding:
Recognizing high mountains as
biogeomorphic ecosystems

To implement the first two new research directions
and to successfully integrate their findings, an
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overarching biogeomorphic perspective is needed for
high mountain environments. We are convinced that
a ‘biogeomorphic ecosystems’ (Balke, 2013;
Corenblit et al., 2015) approach to high mountain
environments will help to unify and streamline
geomorphic and ecological research that come with
different viewpoints, terminology and methodology
(Haussmann, 2011). Recognizing mountain envi-
ronments as biogeomorphic ecosystems with inher-
ent, frequent and regular physical (geomorphic)
disturbances will mean that ecologists explicitly need
to investigate geomorphologically disturbed areas
instead of focussing on stable ground (e.g. Cullen
et al., 2001). Likewise, geomorphologists need to
realize that not only plants but also plant species
matter as they respond to and affect geomorphic
processes differently. Thus, it is well worth to assess
which species are covering a site of interest to
geomorphologists.
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Physique des Régions Équinoxiales. Paris, France:
Levrault & Schoell.

Jakob M (2022) Chapter 14 - landslides in a changing
climate. In: Davies T, Rosser N and Shroder JF (eds)
Landslide Hazards, Risks, and Disasters: Hazards
and Disasters Series. 2nd edition. Amsterdam,
Netherland: Elsevier, pp. 505–579. DOI: 10.1016/
B978-0-12-818464-6.00003-2.

Jaroszynska F, Rixen C, Woodin S, et al. (2023) Re-
sampling alpine herbarium records reveals changes
in plant traits over space and time. Journal of
Ecology 111(2): 338–355. DOI: 10.1111/1365-2745.
14062.

Karssenberg D, Bierkens MFP and Rietkerk M (2017)
Catastrophic shifts in semiarid vegetation-soil sys-
tems may unfold rapidly or slowly. The American
Naturalist 190(6): E145–E155. The University of
Chicago Press. DOI: 10.1086/694413.

Kattge J, Diaz S, Lavorel S, et al. (2011) TRY - a global
database of plant traits. Global Change Biology 17:
2905–2935. DOI: 10.1111/j.1365-2486.2011.02451.x.

Kattge J, Bönisch G, Dı́az S, et al. (2020) TRY plant trait
database–enhanced coverage and open access.Global
Change Biology 26(1): 119–188. Wiley Online Li-
brary. DOI: 10.1111/gcb.14904.

Kenner R, Noetzli J, Hoelzle M, et al. (2019) Dis-
tinguishing ice-rich and ice-poor permafrost to map
ground temperatures and ground ice occurrence in the
Swiss alps. The Cryosphere 13(7). 1925–1941. Co-
pernicus GmbH. DOI: 10.5194/tc-13-1925-2019.
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