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A supply-limited torrent that does not feel
the heat of climate change

Jiazhi Qie 1 , Adrien Favillier 1,2, Frédéric Liébault 3,
JuanAntonio Ballesteros Cánovas 1,4, Jérôme Lopez-Saez1, SébastienGuillet 1,
Loïc Francon1, Yihua Zhong1, Markus Stoffel 1,2,5 & Christophe Corona 1,6

Debris-flow activity in the Alps is anticipated to undergo pronounced changes
in response to a warming climate. Yet, a fundamental challenge in compre-
hensively assessing changes in process activity is the systematic lack of long-
term observational debris-flow records. Here, we reconstruct the longest,
continuous time series (1626-2020) of debris flows at Multetta, a supply-
limited torrential system in the Eastern Swiss Alps. Relying on growth-ring
records of trees that were damaged by debris flows, we do not detect sig-
nificant changes in the frequency or magnitude over time. This seeming
absence of a direct climatic influence on debris-flow initiation aligns with the
regular distribution of repose time patterns, indicating a dependence of local
process activity on sediment discharge and recharge. This stark difference in
process behavior between our supply-limited site and transport-limited
catchments has implications for assessing torrential hazard and riskmitigation
in a context of global warming.

Debris flows are water-laden masses of rock, soil, air and fines with
volumetric sediment concentrations typically exceeding 40%1–3. These
sediment masses move rapidly through channel networks and across
alluvial fans, where they claim lives and/or devastate property4–6.
Debris flows are typically triggered by intense precipitation7–9 and soil
instability10–12 occurring at the same locations periodically13. Studies on
the historical development of debris flows, focusing almost exclusively
on supply-unlimited catchments, point to an increase in both their
frequency and magnitude14–17 as a result of more frequent rainstorms,
but also due to glacier retreat, rock-glacier acceleration18–20, or per-
mafrost degradation21–24 leading to enhanced accumulation of
unconsolidated debris in the initiation zones of debris flows25. Yet,
results are not unequivocal and some authors also argued that debris-
flow activity does not show any clear trend at all21,26–29 or even reduced
activity30 as a result of fewer storms in summer or changes in sediment
supply. This conundrum31 lies in part in the often complex – or indirect

– relation between debris-flow triggering, sediment availability, geo-
morphic connectivity, and climate32–34. Likewise, the scarcity of sys-
tematic data28,35,36 hampers assessment of climate change impacts on
debris flow occurrence, especially in remote mountain environments
and over multi-centennial timescales28. In addition, the few datasets
existing so far tend to suffer from non-uniform observation rates35 as
well as biases toward recent and larger debris flows causing damage to
humans or infrastructure37–39. Major uncertainties therefore persist in
(i) the assessment of multidecadal to centennial trends in debris-flow
activity or (ii) the detection and attribution of climatic drivers which in
turn influence changes in the frequency or magnitude of debris flows.
These gaps in knowledge and observations currently also impede
efforts to calibrate and evaluate process-based models that simulate
the past and future evolution of debris-flow activity and impacts14,40.
Here, we take advantage of an exceptional old-growth Swiss mountain
pine (Pinus mugo ssp. rotundata) forest stand growing on theMultetta
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fan (Tschierv, Grisons; Eastern Swiss Alps; 46.63°N, 10.31°E;
Figs. 1 and 2). The stand is impacted by debris flows and thus suited for
process reconstruction using dendrogeomorphic techniques41,42. This
study does not only present the longest reconstruction of past debris-
flow activity in the Eastern Swiss Alps, but also allows investigation of
whether past and ongoing climate warming has had an impact on the
frequency and magnitude of debris flows.

TheMultetta fan (Figs. 1 and 2) is amassive depositional landform
fed by four headwater catchments (Fig. 1B, Supplementary Fig. S1).
Characterized by thin soils and low water storage capacity43, deposits
consist of a main (surface: 1.03 km²) and a secondary fan (0.21 km²;
Fig. 1B). Debris-flow material exclusively originates from the small
(0.59 km²) but very steep (mean slope: 43.5°) Vallun da Piz Daint
headwater catchment shown in Figs. 1C, 2, and Supplementary Fig. S2,
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Fig. 1 | Debris-flow activity reconstructed from multi-centennial, damaged
Swissmountain pines in a supply-limited catchment. A TheMultetta catchment
is located in the Eastern Swiss Alps and (B) characterized by a main and a small
secondary fan. The headwaters canbe subdivided into four units, ofwhich onlyunit
2 is directly connected to the fan.CThis unit, knownasVallundaPizDaint (reaching
an elevation of up to 2968m asl, red triangle) can be subdivided into 9 subunits,
most of which consist of bedrock from which limited sediment is supplied to the

debris-flow system through freeze-thaw weathering. D On the main fan, a multi-
centennial Swiss mountain pine (Pinus mugo ssp. rotundata) stand is regularly
affected by debris flows. A total of 478 trees (colored dots) have been sampled here
for dendrogeomorphic analyses along 4 transects. E Growth disturbances in Swiss
mountain pine include growth reductions as well as the formation of callus tissue
and compression wood after debris-flow impact; these changes in growth can be
used to date events retrospectively with annual precision.
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a feature underlain by Triassic sedimentary rocks of the Engadin
Dolomites. Dominant lithologies consist of dolomites in the upper
part, and sandstones in the lower part. Whereas the region was cov-
ered in ice during the Last Glacial Maximum, no glacial deposits exist
anymore in the catchment, but can be found in its close vicinity. Per-
mafrost is, at best, marginally present on the east face of Piz Daint44

(2968m asl, Fig. 1C). With a Melton index45 of 1.24 and a proximal fan
slope of 22%, the headwater catchment presents a very high debris-
flow susceptibility46

Detailed analysis of orthoimages and LiDAR data indicates that
Multetta is a debris-flow system with notable limitations in sediment
supply. In fact, debris-flow activity is controlled by 9 active sediment
sources representing 83% of Vallun da Piz Daint (Supplementary
Fig. S2, Supplementary Table S1). These sources are dominated
by rocky headwaters in which rockfall resulting from frost cracking
is the main source of debris accumulation. In similar bedrock-
dominated, low-order headwater catchments, loose debris has
been shown to accumulate at a rate that is half that of colluvial
erosion processes, with obvious consequences on debris-flow
frequency47–49

Results and discussion
Multi-centennial debris flow reconstruction in the Eastern
Swiss Alps
The eastern part of the main fan is covered with a continuous and
dense P.mugo stand while on its western part, the forest is sparser and
fragmented by recent debris-flow channels and deposits. Den-
drogeomorphic analyses of the 478 P. mugo trees sampled along four

transects across the main fan (Fig. 1D) yield a mean tree age of
261 ± 85 yrs and allowed detection of 1427 growth disturbances in the
tree-ring series (Figs. 1E and3A), corresponding to 56yearswithdebris-
flow activity since 1626 CE (Fig. 3B). As the number of trees available
for analysis decreases as one goes back in time and some parts of the
fan may not have recording trees in the more distant past40,50, we
realized a completeness analysis to assess the reliability of our data
with two approaches50,51 (see Methods). Results indicate that the per-
iod from which the tree-ring based reconstruction is reliable and free
of biases commences in 1687 or 1750, depending on the approach
used (Fig. 3B).

Considering successively 1687 (n = 55 events) and 1750 (n = 44
events) as starting dates of the reconstruction, we find a long-term
average occurrence ratio of 0.16 and 0.2 debris flows year–1, respec-
tively. Reconstructed process activity (Fig. 3B, Supplementary Fig. S3)
points to an absence of events between 1750–1769, 1790–1799,
1850–1859, 1940–1950, and2010–2019,whereas0.4 debrisflows year–1

were recorded in the 1860s, 1890s and 1910s (Fig. 3B). Interestingly, all
episodes with peaks in debris-flow activity are in line with those
reported for the transport-limited, permafrost-dominated Ritigraben
catchment (Valais, Western Swiss Alps)52 and coincide with periods
characterized by considerable above-average summer (JJA) and early
fall (S) precipitation in the Swiss Alps53. Yet, and despite these decadal
fluctuations in process activity at the Multetta fan, the Theil-Sen slope
is zero for both the 1687–2020 and 1750–2020 datasets, clearly indi-
cating an absence in changes in process activity. Likewise, we can
neither reject a null hypothesis assuming the absence of a trend in the
time series using the Bartels, Wald–Wolfowitz, and Mann–Kendall

Fig. 2 |Overviewof the study site. AOverviewof the upper reachesof theMultetta
fan with old-growth Swiss mountain pine (Pinus mugo ssp. rotundata) trees and
debris-flow deposits (mostly levees in this case) and the poorly incised channels
leading to frequent avulsions. The headwater catchment (Vallun da Piz Daint) can
be seen in the background.B In the lower reaches of theMultetta fan, the relatively

fine debris-flowmaterial injuries and buries the pine trees, but does not necessarily
kill them. As a result, the forest stand growing on the fan is unusually old and thus
allows the construction of a long debris-flow timeseries. In this part of the fan,
sequences of lobate deposits, levees and poorly marked channels dominate the
landscape.
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trend tests (p-values > 0.05, Supplementary Table S2), nor detect a
significant breakpoint in the cumulative number of events (Fig. 3B).

We also find that debris-flow frequency during the colder epi-
sodes of the Little Ice Age (LIA, 1570–190054), known as thgreMaunder
(1645–1715) and Dalton (1790–1830) minima, varied between zero
debris flows year–1 during the 1650 s, 1660 s and 1790 s and 0.3 debris
flows year–1 in the 1690 s. Unlike other studies according to which
debris-flow activity is anticipated to increase as a result of climate
change29,40, we do not detect any indications of enhanced process
activity over the last decades that could potentially be linked to global
warming (Fig. 3B).

Spatial extent of reconstructed debris flows
Due to the massive redistribution of sediment on fans in space and
time55,56 and frequent avulsions, a precise reconstruction of the spatial
extent of past debris-flow events is virtually impossible with tree-ring
analysis2. In particular, the apparent spatial extent of events decreases
once one goes back in time as fewer old trees will remain available for
analysis57 and as older deposits are routinely overridden by more
recent activity58. Biases may also result from the annual resolution of
tree-ring based reconstructions, often preventing detection of multi-
ple debrisflows occurring in a single year58,59. Here, we overcome these
limitations by adopting an original approach by which the fan was
schematically divided into sixteen units delimited by 4 transects and 4
radial subunits (see Methods for details) (Fig. 1D). Debris-flow sizes
were defined as being XS, S, M, L, XL and XXL as soon as they affected
1–10, 10–20, 20–30, 30–40, 40–50 and >50% of the fan surface,
respectively (seeMethods). Since 1687, 4 (7%), 30 (55%), 9 (16%), 4 (7%),
2 (4%), and 6 (11%) debris flows were rated as XS, S, M, L, XL and XXL,
respectively (Fig. 3B, Supplementary Fig. S4).

Over the period 1687–2009, as a result of the convex shape of the
transverse profiles, recurrence intervals of debris flows were sig-
nificantly lower at the margins (10–20 yr) than in the central part
(40–70 yr) of the fan (Supplementary Fig. S4). Also, despite a homo-
geneousdistributionof older trees on the fan,mostdebrisflowswereS
or M prior to 1802 and restricted to the easternmost parts of the fan
(Fig. 4B). The XXL events of 1816 and 1849 (Fig. 4A) strongly modified
fanmorphology and debris-flowpatterns, resulting in a shift of activity
to thewesternpart of the fan from themid-19th to the early 20th century
(Fig. 4B, Supplementary Fig. S4). This shift recorded between the
1860s and 1910s and the slight increase in debris-flow activity were
caused by a series of XS and S debris flows while larger debris flows

were lacking almost completely during this period (i.e. only 1 L debris
flow in 1864). We suggest that the slight increase in debris-flow fre-
quency during this time was possible because the many debris flows
remained (very) small in size and could not therefore empty the
sediment reservoirs at Vallun da Piz Daint fully. By contrast, in the
transport-limited, permafrost-dominated Ritigraben catchment52,
multiple L andXLdebrisflowswere reconstructed for the sameperiod.
Here, changes in the frequency and magnitude of debris flows are
considered the response of the system to more abundant summer
precipitation and initial warming after the end of the Little Ice Age.

During the 20th and early 21st centuries, any evidence for a change
in process activity or an increase in the occurrence of XL and XXL
debris flows are clearly lacking at Multetta (Fig. 3B), and we note a
complete absence of L, XL or XXL debris flows since 1990. By contrast,
ample evidence exists for the repeat activation of new paths in the
northern and southern parts of the fan after the debris flows of 1917
and 1933 (Fig. 4A, B, Supplementary Fig. S3). The spatial patterns of
debris-flow activity at the site also confirm that avulsions are typically
encouraged by sequences of small-to-medium-sized debris flows fol-
lowed by a large event2,60,61.

Sediment availability and time-repose patterns
Debris-flow frequency of a catchment is, besides climatic thresholds,
also controlled by geological, lithological and geomorphic
characteristics56,62. Initiation mechanisms of debris flows include the
transition of landslides into debris flows63–65, the entrainment and
bulking of sediment in loose deposits at the toe of a cliff66,67 or the
mobilization and entrainment of debris by water in channels68,69.
Sediment availability must thus be considered another key controlling
process variable for inter-event (repose) intervals of debris flows62.

Whereas in transport-llimited basins, an almost unlimited avail-
ability of sediment usually results in irregular, random repose time
patterns following an exponential distribution62, regular or clustered
repose time patterns are typically observed in supply-limited basins
where a substantial time must elapse before the next debris flow will
occur following log-logistic and Weibull distributions. In the
case of the Multetta fan, the Weibull distribution provides the best-
fitting results (p-value > 0.05 and lowest AIC) for both an initial
date of the reconstructed timeseries in 1687 and 1750 (Fig. 5A, B).
Likewise, the conditional probability for the occurrence of a new
debris flow increases slightly with time elapsed since the last event.
The regular event occurrence reflects themutual dependencybetween
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consecutive debrisflows andhighlights that the cut-and-fill pattern, i.e.
the time for the system to replenish after a debris-flow event70–72, is a
key control of debris-flow activity at the Multetta fan.

Theoretical understanding exists that possible changes in the
number, duration, or intensity of freeze-thaw cycles due to warming
could increase sediment supply in high-mountain catchments73–75. The
headwaters of the Multetta debris-flow system are indeed found at
elevations for which changes in freeze-thaw cycles are thought to be
relevant75. Yet, and despite local warming already exceeding 2 °C since
the late 19th century, we cannot detect any changes of a possibly
altered sediment availability on debris-flow activity so far.

Debris flow is one of the dominant geomorphic processes in
mountainous regions, yet, its documentation or the detection of
changes in process activity remains challenging due to the paucity of
systematic, long-term records of past events28,35. Here we overcome
this limitation by reconstructing the systematic, multi-centennial
(1626–2020) timeseries of debris flows for a supply-limited catch-
ment where process activity is not affected by the provision of
unlimited sediment from thawing permafrost or retreating glaciers.
Relying on data from theMultetta, we demonstrate that debris flows in
this supply-limited system recur less frequently than in comparable,
transport-limited catchments. In addition, the regular recurrence of
debris flows and the resulting repose time patterns also evidence that
process activity is controlled by sediment supply over multi-decadal to
centennial timescales and thus much less affected by climate change
than transport-limited systems62. Findings from this study have impli-
cations for future torrent management as the implementation of
climate-proof measures (e.g., enlargement of hazard zones, re-
dimensioning of defense structures76) should be defined based on
sediment availability and the functioning of the debris-flow system.

Methods
Limited sediment supply confirmed by geomorphic mapping
To determine the functioning of the Multetta debris-flow system
and the production/availability of sediment, we realized a detailed

mapping of active sediment sources for its headwaters, i.e. the Vallun
da Piz Daint. Active sediment sources were defined here as unvege-
tated and steep hillslope surfaces where active geomorphic processes
can be detected, and where connectivity to the main channel arriving
at the fan apex can be confirmed. This was done by aerial photo
interpretation of orthoimages (2022, resolution 10 cm) and the hill-
shade view of a Light Detection and Range (LiDAR) Digital Elevation
Model (DEM; 2023, resolution 1m) available from Swisstopo. The high
quality of these remote sensing data allowed manual extraction
of bedrock and colluvium surfaces for the entire catchment, and cal-
culation of the relative surface of these geomorphic domains for
each active sediment source. Colluvial deposits in the catchment
included scree slopes, debris-flow and colluvial fans, and a large
rockfall deposit.

Dendrogeomorphic sampling at Multetta fan
Debris flows are the predominant process atMultetta and have formed
characteristic geomorphic features, such as lobes, levees bank erosion
and terraces. In the forest virtually every tree shows clear evidence of
pastdebrisflow impacton the stemsurface, predominantly in the form
of injuries or broken crowns. To gather a representative dataset of past
debris flow activity, we sampled trees along four transects (T1–T4)
located at 1800–1900, 1784–1900, 1780–1900, 1790–1900 m asl,
respectively (Fig. 1C). On each transect, trees were carefully inspected
and sampled based on visible growth disturbances (GDs) on the stem
(i.e. scars, decapitation, tilted stems). Two increment cores were taken
from living trees, using a 5.5mm Pressler increment borer, following
the assumed direction of past debris flow events. For visible scars,
additional cores orwedgeswere taken in the overgrowing callus tissue.
For tilted trees, cores were taken at the point of maximum stem
bending77. Cross sections were taken from dead trees and stumps.
Trees with growth disturbances (GDs) obviously unrelated to debris
flows (e.g., injuries caused by a falling neighboring tree) due to their
incoherent position on the stem were systematically excluded. The
position of each sampled tree positions was recordedwith an accuracy
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of 1m using a Trimble GPS device. In total of 478 P. mugo trees were
sampled during a field campaign in 2020.

Laboratory analyses
In the laboratory, tree samples were processed according to the
standard procedures78. Ring widths were measured on the scanned
images and series were cross-dated using the CDendro-CooRecorder
9.8.1 software suite79. The quality of the cross-dating was evaluated
using COFECHA80. Within each ring width series, we identified GDs
commonly interpreted as responses to geomorphic processes
including abrupt growth suppression81 (GS), the onset of compression
wood82 (CW) and injuries83 (I). Following the criteria proposed by
ref. 84, the intensity ofGSandCWwas categorized asweak,mediumor
strong according. Injuries, GS and CW of medium and strong intensity
were considered as unambiguous witnesses of debris flows and used
for event detection. The first 30 rings of each tree-ring series, corre-
sponding to juvenile growth, were not included in the analysis,
because young flexible trees, which are more susceptible to bending,

could potentially bias the reconstruction85. Only one core per tree was
analyzed if theother onedid not showobviousGDs, finally 478 P.mugo
trees with 683 increment cores and 39 cross sections/wedges were
proceeded to build the debris flow chronology.

Zonation of the study area
To account for the wide area and the geomorphic complexity of the
fan, prior to event detection, we divided the study area in different
sectors (Fig. 1D). For this purpose, we identified the main fan-surface
topographic features, including channels, main lobes, and levees, on a
Digital Elevation Model (DEM) hillshade with 2-m spatial resolution
created from a lidar point cloud. We determined the position of the
channels using theflowaccumulation tool available fromthe arc-hydro
module of ESRI ArcGIS 10.7. Based on the 2-mDEM, the tool calculates
accumulated flow as the accumulated weight of all cells flowing into
each downslope cell in the output raster. Cells were selected by
applying a 1200mm accumulation threshold and were divided into
channels and thalwegs. Based on this analysis, we further identified
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Fig. 5 | Best-fitting distributions of repose-time patterns at Multetta fan over
the period. A 1687–2020 and B 1750–2020 are given by the Weibull distribution
(p >0.05, lowest Akaike information criterion (AIC)), pointing to regular and
dependent debris-flow repose times as typical for supply-limited catchments. The
upper/central panels show estimated annual debris-flow occurrence rates and
corresponding estimated repose time distributions. All repose times were nor-
malized by dividing them by their mean value. The general suitability of the

distributions was tested with the p-value associated to aMonte Carlo version of the
Kolmogorov–Smirnov test. The distribution with the lowest AIC value (i.e. Weibull
in our case) is shown with a pointwise 95% confidence interval based on 1000
bootstrap samples62. The bottom panel shows the likelihood for a debris flow to
occur at a certain time lag after the last event based on the hazard function of the
Weibull distribution62.
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three compartments (C1–C3) manually following the flow directions
and the continuities of the river networks on theMultetta fan (Fig. 1D).
These thalwegsdistributed almost parallelly, connect theproximal and
the distal area of the fan in the southeastern part and initiate at ~1900
m asl on its northeastern part. They delimit four sectors (SI-SIV) in
which debris flows were reconstructed.

Detection of past debris flow events
In each sector SI-SIV, the detection of past debris flow events was
based on (1) the number, (2) the intensity of GDs the (3) percentage
(It)86 and (4) the spatial patterns of damaged within a given year. The
reconstructions starts when theminimum number of trees exceeds 15.
Following the recommendations of Ref. 87, we used flexible It and GD
thresholds adjusted to the sample size (ss): GDs ≥2, It ≥6 for ss <50,
GDs ≥3 and It ≥4 for 50 < ss≤ 99, as GDs ≥4 and It ≥2 for ss ≥100.
Following ref. 88, we quantified the robustness of reconstructed
events (low, medium, and high confidence levels) based on the
intensity of GDs within a given year. In a final step, we carefully
examined the spatial distribution of damaged trees. Years (1) showing
incoherent patterns of damaged trees (e.g. GDs evenly distributed on
the cone, probably due to climatic extremes or insect pests), (2)
recorded in historical chronicles as snow avalanche years, or (3)
characterized by highmortality of P. mugo trees, which is indicated by
low tree-ring index (<1.5 average value), in the event cataster of the
Canton of Grisons and the Swiss National Park89 were excluded from
analysis. To detect changes in the reconstruction potentially related to
time-varying sample size87,90, we performed a completeness analysis
usingNegative Binomial and non-parametric change-point analyses50,91

available from the np package in R.

Spatial extent of reconstructed events
Due to the intense redistribution of sediments through space and time
ondebris-flow fans and the frequent avulsions, precise reconstructions
of the spatial extent of past debris events are impossible using tree-
ring analysis2. In fact, the spatial extent of events, decreases with age
because of fewer old trees57. In addition, part of older deposits may be
overridden or eroded by more recent activity. A smaller number of
affected treesmay thus not imply that those older events were smaller
than more recent flows57 Finally, as tree-ring resolution is typically
annual, it must be assumed that all trees affected within a given year
were affected by the same event. This may be restrictive assumption if
the typical return period of debris flows is on the order of decades to
centuries58. To overcome these limitations, we adopted an original
approach and schematically divided the cone into sixteen regions
delimited by the four sectors (SI-SIV) used for event detection and the
four transects used for sampling (T1–T4, Fig. 1D). For a given year, a
given region (SI.1–S.IV.4) was considered as affected if (1) an event was
reconstructed in the sector and (2) a tree was damaged on the transect
T1–T4. Within a given area, the recurrence interval of debris flow
eventswas calculated as the ratio of the length of the reconstruction to
the number of reconstructed events. Finally, if 1–10, 10–20, 20–30,
30–40, 40–50 and >50% of the areas were affected, the magnitude of
the event was classified as XS, S, M, L, XL, XXL (Fig. 4A).

Trends in debris flow activity
There is currently much debate about the impacts of global warming
on the frequency of debris flows37,91,92. An increase in frequency is
expected due to the increasing frequency of extreme precipitation
events93, warming and thawing of permafrost29, but remains con-
troversial in historical records94,95 or tree-ring reconstructions27,51.
Here, we took advantageof the age of the trees on the debris fanandof
the multi-century length of our reconstruction, to perform several
(nonparametric) trend tests for assessing the presence of trends in the
decadal frequency of debris flow events. Following refs. 50,91, we used
the nonparametric Mann–Kendall, Wald–Wolowitz trends test and the

Theil-Sen slope for assessing the presenceof trends in the data set over
the 1687–2020 and 1750–2020 periods.

Repose-time patterns of debris flow events at Multetta
A significant contributor to debris-flow occurrence is a supply of
readily erodiblematerial, often created by rockfalls and landslides71. In
general, debris-flow catchments can be classified as either supply-
unlimited (transport-limited) or supply-limited (weathering-limited).
Depending on the available sediment load, debris-flow repose times,
i.e. the time elapsed between two consecutive events, follow either
more or less regular (supply-limited), rather irregular or purely irre-
gular (supply-unlimited) occurrence patterns62,96,97. Following Ref. 62,
we hypothesize that when events occur continuously and indepen-
dently at a constant average rate, repose times should be exponentially
distributed. By contrast, debrisflowevent frequencies showing regular
or rather irregular (clustered) repose time patterns, indicating poten-
tial dependencies between events, could be efficiently modeled with
respect to a Weibull or a log-logistic distribution, respectively. The
three distributions were successively used to model the frequency of
the repose times at the Multetta fan. Distributions yielding a p-value
larger than 0.05 were considered suitable and the best-suited dis-
tribution was chosen on the basis on the lowest Akaike information
criterion (AIC).

Data availability
The base maps in Fig. 1, Figure S1 and Figure S2 were produced using
free geodata from the Federal Office of Topography swisstopo https://
www.swisstopo.admin.ch/. All tree-ring data, growth disturbance data
and final debris-flow chronology data generated in this study have
been deposited in the database named “Climate change has no
apparent effect on debris flows in a supply-limited torrent” under
accession code https://doi.org/10.5281/zenodo.13745071.

Code availability
The R code used for completeness analysis in this study is originally
from the previously published paper51 and is available on GitLab at
https://gitlab.com/Rexthor/debris-flow-trends-zermatt. The R code
used for repose timepattern analysis in this study is originally from the
previously published paper62 and is available on GitLab at https://
gitlab.com/Rexthor/repose-time-patterns.
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